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A B S T R A C T

Humans divide their attention among multiple visual targets in daily life, and visual search can get more difficult
as the number of targets increases. The biased competition hypothesis (BC) has been put forth as an explanation
for this phenomenon. BC suggests that brain responses during divided attention are a weighted linear combination
of the responses during search for each target individually. This combination is assumed to be biased by the
intrinsic selectivity of cortical regions. Yet, it is unknown whether attentional modulation of semantic repre-
sentations are consistent with this hypothesis when viewing cluttered, dynamic natural scenes. Here, we inves-
tigated whether BC accounts for semantic representation during natural category-based visual search. Subjects
viewed natural movies, and their whole-brain BOLD responses were recorded while they attended to “humans”,
“vehicles” (i.e. single-target attention tasks), or “both humans and vehicles” (i.e. divided attention) in separate
runs. We computed a voxelwise linearity index to assess whether semantic representation during divided atten-
tion can be modeled as a weighted combination of representations during the two single-target attention tasks. We
then examined the bias in weights of this linear combination across cortical ROIs. We find that semantic repre-
sentations of both target and nontarget categories during divided attention are linear to a substantial degree, and
that they are biased toward the preferred target in category-selective areas across ventral temporal cortex. Taken
together, these results suggest that the biased competition hypothesis is a compelling account for attentional
modulation of semantic representations.
1. Introduction

In daily life, humans frequently search for a multitude of objects in
their visual environment. Yet, apart from search tasks where targets are
particularly salient (e.g. searching for black bears in snow), shared fea-
tures among targets can render the search task more difficult as the
number of targets increases. Psychophysical studies showed that reaction
time and error rate systematically increase with growing number of items
to be attended (Eckstein et al., 2000; Wolfe, 2012; Reynolds and Che-
lazzi, 2004; Luck et al., 1997). The biased competition hypothesis (BC)
has been proposed to account for this performance decline (Duncan,
1984). BC reasons that the brain has limited representational capacity.
Thus, simultaneous search for multiple visual objects should result in a
competition among their representations. Moreover, attention should
bias this competition in favor of the target (Desimone, 1998), irrespective
of whether attention is deployed to a spatial location (Keitel et al., 2012;
Kastner et al., 1998), to a visual feature (McMains and Kastner, 2011;
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Bichot et al., 2005; Boynton, 2005), or to a visual object (Gentile and
Jansma, 2010; Reddy et al., 2009).

Several neuroimaging studies provided evidence for competition
among cortical representations of multiple objects across visual cortex in
the absence of specific task demands (Kastner et al., 1998; MacEvoy and
Epstein, 2009; Gentile and Jansma, 2010; Nagy et al., 2011; Baeck et al.,
2013; Jeong and Xu, 2017). Gentile and Jansma (2010) measured
average BOLD responses in fusiform face area (FFA) while subjects
viewed a single or a pair of face images. Response to a pair of faces was
lower than the summation of the responses when each of the faces was
presented individually. Similarly, Nagy et al. (2011) presented four
equispaced isolated images of faces or noise. The number of face images
was increased systematically from zero to four. They reported that re-
sponses in FFA and lateral occipital complex (LOC) to multiple faces were
lower than the summation of the responses to individual faces. MacEvoy
and Epstein (2009) further suggested a linear model of representational
competition among objects. The authors presented either a single or a
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pair of isolated images of objects from four categories (shoes, chairs, cars,
or brushes). Using multivoxel pattern analysis, they showed that the
response pattern in object-selective areas in ventral temporal cortex
when subjects viewed pairs of objects can be approximated by the mean
of response patterns when they viewed each of the objects in isolation.

Recent studies also provided evidence for top-down influences in BC
during divided attention to multiple objects (Reddy et al., 2009; Gentile
and Jansma, 2010). Reddy et al. (2009) studied BOLD responses while
subjects attended to a single or a pair of object categories among four
alternatives (faces, houses, shoes, or cars). A multivoxel pattern analysis
in category-selective areas in ventral temporal cortex revealed that the
response pattern during divided attention to two object categories was a
weighted linear combination of response patterns while attending to
individual targets. The authors then reported that in PPA (preferentially
responsive to houses) and in FFA (preferentially responsive to faces),
combination weights were biased toward the preferred object category.
Similarly, Gentile and Jansma (2010) reported that during attention to a
single face within a pair of face images, FFA responses were biased to-
ward the responses recorded when the target face was presented in
isolation.

Previous studies on BC have provided evidence for competition in
representation of isolated static objects, and top-down attentional bia-
ses in the competition in favor of the target. Yet, natural scenes are
intrinsically dynamic and cluttered with many different objects and
actions. It has recently been suggested that thousands of visual cate-
gories are embedded in a continuous semantic space across cortex
(Huth et al., 2012), and that category-based visual search causes broad
modulations in these semantic representations (Çukur et al., 2013). It is
currently unknown whether BC can account for modulations in se-
mantic representation during natural visual search for object-action
categories.

To address this question, we conducted a functional magnetic reso-
nance imaging (fMRI) experiment (Fig. 1). Five human subjects viewed
69 min of natural movies while performing three separate tasks in
different runs: attend to “humans”, attend to “vehicles”, and attend to
“humans and vehicles” (i.e., divided attention). Whole-brain BOLD re-
sponses were recorded and category responses for 831 objects and ac-
tions were estimated separately for each task and each individual subject
(Nishimoto et al., 2011). Individual subjects’ semantic spaces were
estimated via principal component analysis on the category response
profiles. Voxelwise semantic tuning was then assessed by projecting
estimated category responses onto individual subjects’ semantic spaces.
To test whether the semantic tuning during divided attention can be
approximated by a weighted linear combination of the tuning during
single-target tasks, ordinary least squares was used among semantic
tuning profiles for the three tasks. To reveal the interactions between the
attentional bias in semantic tuning and the intrinsic selectivity of brain
areas, the semantic tuning distribution during divided attention was
regressed onto tuning distributions during the two single-target tasks.
2

2. Materials and methods

2.1. Subjects

Five healthy adult volunteers (four males, one female) with normal or
corrected-to-normal vision participated in this study: S1 (age 32), S2 (age
28), S3 (age 28), S4 (age 28), S5 (age 28). Data were collected at the
University of California, Berkeley. The main experiment contained three
sessions. Functional localizers were collected in two sessions. The pro-
tocols for these experiments were approved by the Committee for the
Protection of Human Subjects at the University of California, Berkeley.
Written informed consent was obtained from all subjects before scanning.

2.2. MRI protocols

Data were collected using a 3T Siemens Tim Trio MRI scanner
(Siemens Medical Solutions) using a 32-channel receiver coil. Functional
data were collected using a T2*-weighted gradient-echo echo-planar-
imaging pulse sequence with the following parameters: TR ¼ 2 s, TE
¼ 33 msec, water-excitation pulse with flip angle ¼ 70∘, voxel size ¼
2.24 mm � 2.24 mm � 4.13 mm, field of view ¼ 224 mm � 224 mm, 32
axial slices. To construct cortical surfaces, anatomical data were collected
using a three-dimensional T1-weighted magnetization-prepared rapid-
acquisition gradient-echo sequence with the following parameters: TR ¼
2.3 s, TE ¼ 3.45 msec, flip angle ¼ 10∘, voxel size ¼ 1 mm � 1 mm � 1
mm, field of view ¼ 256 mm � 212 mm � 256 mm.

2.3. Stimuli

Continuous natural movies were used as the stimulus in the main
experiment. Three 7 min 40 s movie segments were compiled from 10 to
20 s movie clips without sound. Movie clips were selected from a wide
variety of sources as detailed in Nishimoto et al. (2011). High-definition
movie frames were cropped into a square frame and downsampled to
512� 512 pixels, covering a 24∘ � 24∘ field of view. Subjects were
directed to fixate on a color square of 0:16∘ � 0:16∘ at the center. The
color of the fixation dot was changing at 1 Hz to ensure visibility. The
stimulus was presented at a rate of 15 Hz using an MRI-compatible
projector (Avotec) and a custom-built mirror arrangement. Subjects’
eye positions were monitored at 60 Hz using a custom-built camera
system equipped with an infrared source and the ViewPoint EyeTracker
software suite (Arrington Research; see Supplementary Methods).

2.4. Experiment design

The main experiment was performed in nine runs of 8 min 30 s
duration each to maintain relatively low inter-run scan overhead. Three
repetitions of 3 distinct movie segments were presented across runs,
where each segment lasted 7 min 40 s. The movie segments were
Fig. 1. Hypothesized changes in semantic repre-
sentation during divided attention. Recent studies
have proposed that the human brain represents thou-
sands of object and action categories by embedding
them in a low-dimensional space based on their se-
mantic similarity (Huth et al., 2012). It has further
been shown that attention warps semantic represen-
tation in favor of the target category, and nontarget
categories that are semantically similar to the target
(Çukur et al., 2013). If the biased competition hy-
pothesis is to mediate semantic representations, the
representation during divided attention should be a
weighted linear combination of representations during
attention to individual targets.
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compiled by randomly concatenating 10–20 s short movie clips without
sound. Across the entire movie stimulus of 23 min, only humans were
present in 303 s, only vehicles were present in 365 s, both categories
were present in 280 s, and neither of the two categories were present in
432 s. Subjects were instructed to covertly search for the target categories
in the movies. A cue word was displayed before each run to indicate the
attention task: “humans”, “vehicles”, or “humans and vehicles”. In the
“attend to humans” task, subjects searched for human categories (e.g.
woman, man, boy). For the “attend to vehicles” task, subjects searched
for vehicle categories (e.g. car, truck, bus). Subjects searched for targets
from either of the human or vehicle categories in the divided attention
task. Note that while two of the tasks here (i.e. attend to “humans” and
attend to “vehicles”) are similar to the tasks in a previous study from our
lab (Çukur et al., 2013), the data collected for the attention tasks are
independent from that previous study.

Two procedures were performed during the experiments to alleviate
potential biases due to subject expectation. First, the clips within each
movie segment were ordered so as to counterbalance –within and across
runs– the presence of scenes containing only humans, only vehicles, both
categories, and neither of the two categories. Second, the order of the
attention tasks were counterbalanced across runs (Table 1). Note that this
procedure gives more systematic control over a fully randomized
ordering, and it maximizes the time between repeated presentation of a
given movie clip across different attention tasks. To maintain vigilance,
subjects were asked to press a button when they detected a target on the
screen. BOLD responses were recorded from the whole brain. To mini-
mize the effect of transient confounds, data from the first 20 s and the last
30 s of each run were discarded. These procedures resulted in 690 data
samples for each attention task.
2.5. Data preprocessing

Functional images collected in the main experiment were motion
corrected. Using the SPM12 software package (Friston et al., 1995), the
functional images were aligned to the first image from the first session of
the main experiment. Three subjects that participated in this study were
common with a previous study Çukur et al. (2013). Functional images of
these subjects were aligned to the reference images from that previous
study. Non-brain tissues were removed using the brain extraction tool
(BET) from the FSL software package (Smith, 2002). Within each run,
low-frequency drifts were removed from BOLD responses in each voxel
using a second order Savitzky-Golay filter over a 240 s temporal window.
The resulting voxelwise time series were z-scored to attain zero mean and
unit variance.
2.6. Model fitting

For each voxel, a linearized model was estimated to relate the movie
stimulus to the BOLD responses as detailed in Supplementary Methods and
in a previous study from our lab (Çukur et al., 2013). First, a feature
representation of the movie stimulus was generated by labeling the
presence of hundreds of objects and actions in the movies. Then, category
models were fit to estimate category response vectors that represented
the contribution of each category to single-voxel BOLD responses.
Table 1
Presentation order of the movie segments and order of the search tasks
during the main experiment. The three 7 min 40 s movie segments were
repeatedly displayed three times and to minimize subject expectation bias, the
order of search tasks was interleaved across runs. “H” denotes attend to
“humans”, “V” denotes attend to “vehicles”, and “B” denotes attend to “both
humans and vehicles” tasks.

Run Number 1 2 3 4 5 6 7 8 9
Attention Task H V B V B H B H V
Movie Segment Number 1 2 3 1 2 3 1 2 3

3

2.7. Semantic representation of objects and actions

In this study, we question whether semantic tuning during divided
attention can be well described as a weighted linear combination of se-
mantic tuning during single-target attention tasks. Semantic tuning
profiles for each attention condition were obtained by projecting the
respective category responses onto semantic spaces in individual subjects
(Huth et al., 2012). Category response vectors for the divided attention
task were not included to prevent bias in the estimated semantic space,
and subsequently in performance of the weighted linear combination
model. The collection of principal components (PCs) that described at
least 90% of the variance in response profiles was selected. This resulted
in L 2 ½36;47� PCs for the five subjects that are each 831-dimensional.
Semantic tuning for each voxel was obtained by projecting the cate-
gory response vector onto these PCs. This projection outputs an
L-dimensional vector.
2.8. Linearity of semantic tuning during divided attention

To test whether semantic tuning during divided attention could be
predicted using a weighted linear combination of semantic tuning during
the two single-target tasks, we compared voxelwise semantic tuning
across search tasks. A mask vector, m 2 R1�831, was used to select the
categories of interest among 831 categories (i.e. human categories,
vehicle categories, target categories, nontarget categories that are
semantically similar to targets, nontarget categories that are semantically
dissimilar to targets). Elements of m were one for categories of interest
and zero elsewhere. Masked response profiles, wti, were obtained by
element-wise multiplication

wti ¼wti � m (1)

where wti is the response profile for voxel i and task t 2 fH;V;Bg
denoting attend to “humans”, attend to “vehicles”, and attend to “both
humans and vehicles”, and � represents element-wise multiplication.
Masked response profiles were then projected onto the PCs to assess se-
mantic tuning profiles, Sti

Sti ¼wtiT (2)

where T 2 R831�L is the matrix of L PCs. Semantic tuning profile during
divided attention was predicted as a weighted linear combination of
semantic tuning during the two single-target tasks using ordinary least-
squares. A voxelwise linearity index (LI) was then quantified as the
Pearson’s correlation coefficient between measured and predicted se-

mantic tuning during divided attention (bSBi; see Fig. 3a)

LIi ¼ corrðSBi; bSBiÞ (3)

A positive LI indicates that semantic tuning during divided attention
can be partly described as a weighted linear combination of the tuning
profiles during the two single-target tasks, whereas a negative LI in-
dicates that no significant variance in tuning during divided attention can
be explained via tuning during single-target attention tasks. Note that
from a model fitting perspective, there are no meaningful differences
among negative LI values in [-1, 0]. To study the linearity of the semantic
representation during divided attention in an ROI, LIs were averaged
across voxels with significant prediction scores within the ROI (q (FDR)<
0.05). The assessed LI averages demonstrate the degree to which se-
mantic representation in individual ROIs during divided attention can be
explained via representations during attention to each target
individually.
2.9. Bias in semantic representation during divided attention

We questioned whether semantic representation during the divided



Fig. 2. Prediction performance of the category model. To assess the per-
formance of the category model, BOLD responses were predicted using the
estimated category responses in each voxel. Pearson’s correlation coefficient
between the predicted and measured BOLD responses was taken as the predic-
tion score. (a) Prediction score in functional cortical areas (mean � sem across
five subjects). Green dots indicate prediction scores for individual subjects. RET,
early visual areas V1–3; MTþ, human MT; FFA, fusiform face area; EBA,
extrastriate body area; PPA, parahippocampal place area; RSC, retrosplenial
cortex; LOC, lateral occipital complex; IPS, intraparietal sulcus; FEF, frontal eye
fields; SEF, supplementary eye fields; FO, frontal operculum. (b) Cortical flat
map of the prediction score for a representative subject. Prediction scores are
shown in the right hemisphere. Voxels with high prediction scores appear in
yellow color and voxels that have low prediction scores appear in dark gray
color (see colorbar). Most voxels in the occipitotemporal cortex, parietal cortex,
and prefrontal cortex are well modeled.
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attention task was biased toward any of the single-target attention tasks.
To address this issue, we studied the distribution of semantic represen-
tation within an ROI for each individual task. Semantic tuning profiles of
significantly predicted voxels within each ROI (q(FDR) < 0.05) were
pooled to obtain the distribution of tuning profiles

St ¼ ½St1jSt2j…jStn�; t 2 fH;V ;Bg (4)

where SH , SV , SB represent distribution of tuning profiles for attend to
“humans”, attend to “vehicles”, and attend to “both humans and vehi-
cles” tasks, and n is the number of significantly predicted voxels within
the ROI. Note that St can also be expressed as

St ¼
�
P
T

t1

��PT

t2

��…��PT
tL

�T
; t 2 fH;V ;Bg (5)

where Ptj 2 R1�n is a row vector that represents the projections of the
response profiles for task t 2 fH;V ;Bg on the jth PC across ROI voxels. To
emphasize semantic axes that explain higher variance, projections (Ptj)
were weighted by the proportion of the explained variance of the cor-
responding PCs. This yielded the semantic tuning distributions, S’t . The
tuning distribution during divided attention was then regressed onto the
distributions during the two single-target tasks

S’B ¼ bHS’H þ bVS’V (6)

The bias index (BI) was quantified (Fig. 4a) as

BI ¼ bH � bV
jbH j þ jbV j (7)

Bias toward the “attend to humans” task would yield BI 2 ð0;1�. A BI
of 0 means that the tuning distribution during divided attention is not
biased toward any of the single-target attention tasks. Whereas, a BI of 1
means that tuning distribution during divided attention is completely
biased toward “attend to humans” task. Similarly, bias toward the
“attend to vehicles” task would yield BI 2 ½ � 1;0Þ, where a BI of � 1
means that tuning distribution during divided attention is completely
biased toward the “attend to vehicles” task. Note that since the response
profiles for the three tasks were projected onto the same PCs the calcu-
lated BI is immune to changes in the direction of PCs. The assessed BIs in
individual ROIs demonstrate the degree and the direction of bias in se-
mantic representation during divided attention toward representations
during attention to each target individually.

3. Results

3.1. Representation of categories during visual search

To investigate attentional modulation of semantic representations
during attention to multiple targets, we estimated voxelwise category
models to measure tuning for hundreds of object and action categories
during the three search tasks. We find that the category model accurately
predicts responses in many voxels across ventral-temporal, parietal and
prefrontal cortices (Fig. 2, see Supplementary Methods).

We compared prediction scores of the category model against a null
model to assess significance of attentional modulations between the three
search tasks: attend to “humans”, attend to “vehicles”, and attend to
“both humans and vehicles”. Prediction scores of the null model were
obtained by randomly shuffling 24-sec blocks of predicted BOLD re-
sponses across the three tasks (seeMaterials and Methods). Cortical voxels
with significant differences in prediction score between the original and
null models were identified. We find that the category model signifi-
cantly outperforms the null model in 77:03� 2:49 % of cortical voxels
(mean � sem across five subjects; bootstrap test, p < 0:05). Moreover,
control analyses revealed that these attentional modulations could not be
attributed to nuisance factors including head motion, physiological
4

noise, and eye movements (see Supplementary Methods).

3.2. Linearity of semantic tuning during divided attention

We hypothesized that if the attentional modulations during search for
multiple targets are mediated by BC, semantic tuning profile during
divided attention should be a weighted linear combination of tuning
profiles during isolated attention to individual targets. To test this pre-
diction, we projected estimated category response vectors onto



Fig. 3. Linearity of semantic tuning during divided attention.(a) Masked category responses for the three attention tasks were projected onto individual subjects’
semantic spaces to estimate the voxelwise semantic tuning profiles. The semantic space in each subject was estimated by performing principal component analysis
(PCA) on response profiles pooled during the two single-target attention tasks. The collection of principal components (PCs) explaining at least 90% of the variance in
the data was selected. Semantic tuning profile during divided attention was predicted via a weighted linear combination of tuning profiles during the two single-target
tasks (dashed lines indicate predicted tuning; solid lines indicate measured tuning). Pearson’s correlation coefficient between the predicted and measured semantic
tuning during divided attention was taken as the linearity index (LI). (b) LI in functional cortical areas (mean � sem across five subjects) for target categories (left),
nontarget categories that are semantically similar to targets (middle), and nontarget categories that are dissimilar to targets (right). LIs for individual subjects are
indicated by green dots. A substantial portion of semantic tuning during divided attention is described as a weighted linear combination even in the absence of target
categories. For all cases, LI is significantly higher in attentional-control areas (IPS, FEF, SEF, and FO; p ¼ 0:006 for target categories, p ¼ 0:012 for similar nontarget
categories, p ¼ 0:055 for dissimilar nontarget categories) and in LOC (p ¼ 0:023 for target categories, p ¼ 0:048 for similar nontarget categories, p ¼ 0:001 for
dissimilar nontarget categories) than in category-selective areas (FFA, EBA, PPA, and RSC).
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individual subjects’ semantic spaces. To calculate LI for specific subsets
of categories among all 831 categories, prior to projection onto semantic
spaces, we masked estimated category responses to include only the
categories of interest. Ordinary least-squares was then used to predict
voxelwise semantic tuning profile during divided attention as a weighted
linear combination of semantic tuning profiles during the two single-
target attention tasks. Linearity index (LI) was taken as Pearson’s cor-
relation coefficient between the predicted and measured semantic tuning
during divided attention (Fig. 3a, see Materials and Methods).

We find that LI for target categories (union of human and vehicle
categories) is 0:34� 0:08 in early visual cortex (RET), 0:76� 0:04 in
MTþ, 0:81� 0:01 in category-selective areas (FFA, PPA, EBA, and RSC),
0:86� 0:02 in general object-selective area LOC, and 0:86� 0:01 in
attentional-control areas (IPS, FEF, SEF, and FO; mean� sem; Fig. 3b). LI
5

is significantly greater than zero in all of the studied functional areas
(bootstrap test, p < 10�4). These results imply that a substantial portion
of semantic tuning during divided attention is linearly described as a
weighted linear combination of tuning during attention to individual
targets. LI is lower in RET (p < 10�4), and MTþ (p ¼ 0:009) compared to
category-selective areas in inferior temporal cortex. This suggests that
representations in RET and MT þ that are selective for lower-level visual
features are less linear compared to higher-level visual areas in inferior
temporal cortex (Kastner and Ungerleider, 2001). In contrast, in LOC, LI
is significantly higher than that of category-selective areas (p ¼ 0:023).
Moreover, LI in attentional-control areas is significantly higher than that
of category-selective areas (p ¼ 0:006). This result suggests that semantic
tuning for target categories better conform to the weighted linear com-
bination model in the general object-selective area and in later stages of
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visual processing compared to visual areas that have a strong category
preference.

A recent study from our laboratory showed that during category-
based attention voxelwise tuning for nontarget categories that are
semantically similar to targets shifts toward target categories (Çukur
et al., 2013). We thus asked whether BC accounts for semantic repre-
sentation of nontarget categories. We also asked whether linearity of
semantic representation for nontarget categories depends on their se-
mantic similarity to targets. Note that the voxelwise modeling framework
allows us to estimate category responses for 831 distinct categories of
objects and actions. Thus, by masking 831-dimensional category
response vectors to select a desired subset of categories, an LI can be
calculated specifically for the given subset. We used separate masks to
calculate LI independently for nontarget categories that are semantically
similar to targets (i.e. animals and social places for humans; devices and
buildings for vehicles), and for nontarget categories that are dissimilar to
targets (all categories except the target categories and the semantically
similar nontarget categories). Akin to the results that we reported for
representation of target categories, LIs for nontarget categories that are
semantically similar to targets and for nontarget categories that are dis-
similar to targets are significantly greater than zero in all of the studied
functional areas (bootstrap test, p < 10�4). This result implies that se-
mantic tuning for non-target categories during divided attention is also
well explained by a weighted linear combination tuning during
single-target tasks. LI for similar categories is 0:64� 0:01 in
category-selective areas, 0:67� 0:05 in LOC, and 0:68� 0:02 in
attentional-control areas. LI for dissimilar categories is 0:50� 0:01 in
category-selective areas, 0:54� 0:06 in LOC, and 0:55� 0:02 in
attentional-control areas. Overall, LI for similar categories is higher than
that for dissimilar categories in all functional ROIs (p < 0:002). This
finding suggests that during divided attention to multiple targets, the
competition in representation of nontarget visual objects is carried over
to objects that are similar to targets (McMains and Kastner, 2010; Beck
and Kastner, 2007). Meanwhile, LI is significantly lower in
category-selective areas than in LOC (p ¼ 0:048 for similar categories,
p ¼ 0:001 for dissimilar categories), and in attentional-control areas (p ¼
0:012 for similar categories, p ¼ 0:055 for dissimilar categories). This
result implies that, as for target categories, semantic tuning for nontarget
categories better conforms to the weighted linear combination model in
LOC and in later stages of visual processing compared to visual areas that
have a strong category preference.

3.3. Bias in semantic representation during divided attention

BC observes that inherent selectivity of cortical areas during passive
viewing can bias the competition in favor of the preferred target during
visual search (Desimone and Duncan, 1995). To study the interactions
between the attentional bias in semantic representation and the intrinsic
category-selectivity of cortical areas, we expressed the semantic repre-
sentation during divided attention task as a weighted linear combination
of the semantic representations during the two single-target tasks in in-
dividual cortical areas. We then investigated whether weights in the
weighted linear combination were biased toward any of the single-target
attention tasks. Masked response profiles across voxels within the ROI
were projected onto individual subjects’ semantic spaces to assess the
semantic tuning distribution. To calculate BI for specific subsets of cat-
egories among all 831 categories, masks were used to select categories of
interest in estimated category response vectors prior to projection onto
semantic spaces. We regressed the semantic tuning distribution during
divided attention onto distributions during the two single-target tasks.
We then quantified a bias index (BI) using the regression weights. Ac-
cording to this index, bias in semantic representation during divided
attention was taken to be in the range ½ � 1; 1�, where positive and
negative values indicate bias toward the “attend to humans” and “attend
to vehicles” tasks, respectively (Fig. 4a, see Materials and Methods).

We find that BI for target categories is 0:32� 0:06 in human-selective
6

areas (FFA and EBA), and�0:29� 0:09 in scene-selective areas (PPA and
RSC; mean� sem; bootstrap test, p < 10�4; Fig. 4b). BI in MTþ, which is
responsive for animate motion, is 0:28� 0:08 (p ¼ 0:001). BI is non-
significant in attentional-control areas (IPS, FEF, SEF, and FO), in eary
visual areas (RET), and the general object-selective area LOC (p > 0:05).
These results suggest that the competition in representation of target
categories during divided attention is biased in favor of the preferred
target category in cortical areas that are selective for targets. On the
contrary, semantic representation is not biased in areas without any
specific category preference.

In a previous study we showed that attention shifts semantic tuning
for both target and nontarget categories (Çukur et al., 2013). Thus, we
asked if there is any bias in representation of nontarget categories during
divided attention. To answer this question, we separately calculated BI
for nontarget categories that are similar to targets and nontarget cate-
gories that are dissimilar to targets. BI for similar categories is 0:38�
0:18 in human-selective areas, �0:11� 0:27 in scene-selective areas
(mean � sem; bootstrap test, p < 10�4; non-significant in RSC (p ¼
0:288)), and 0:23� 0:09 in MTþ. BI is non-significant in
attentional-control areas, in RET, and in LOC (p > 0:05). Meanwhile, BI
for dissimilar categories is 0:32� 0:26 in human-selective areas, and �
0:11� 0:19 in scene-selective areas (mean � sem; p < 0:05;
non-significant in EBA (p ¼ 0:610) and in RSC (p ¼ 0:754)). BI is
non-significant in attentional-control areas, in RET, in LOC, and in MTþ
(p > 0:05). These results indicate that representation of nontarget cate-
gories that are similar to targets is biased in favor of the preferred target
in areas that are selective for targets. Recent reports on semantic repre-
sentation of categories in category-selective areas suggest that FFA is
strongly selective for human categories, whereas EBA has broader
selectivity for categories that are semantically similar to humans (e.g.
animals, mammals, animate movement). Similarly, PPA is shown to be
strongly selective for vehicles, whereas RSC has broader selectivity for
semantically similar categories (e.g. structures, devices, artifacts; Huth
et al., 2012; Çukur et al., 2013). Our findings here indicate that repre-
sentation of nontarget categories that are dissimilar to targets is only
biased in areas that are strongly selective for the targets and not in areas
that are more broadly tuned for categories that are semantically similar
to targets.

The target categories used here (i.e. humans versus vehicles) show
high semantic dissimilarity. This raises the possibility that the biases in
semantic representation differ between human categories and vehicle
categories. To examine this issue, we compared BI for human and vehicle
categories separately. We find that BI for human categories is 0:59� 0:22
in human-selective areas, and �0:02� 0:06 in scene-selective areas
(mean � sem; bootstrap test, p < 10�4 in FFA, EBA; non-significant in
PPA (p ¼ 0:881), and in RSC (p ¼ 0:945); Fig. 5).

Meanwhile, BI for vehicle categories is 0:38� 0:21 in human-
selective areas, and �0:50� 0:01 in scene-selective areas (mean �
sem; p < 10�4; non-significant in EBA (p ¼ 0:622)). BI in human-
selective areas is significantly positive for both human categories and
vehicle categories. Yet, it is stronger for human categories compared to
vehicle categories. Whereas in scene-selective areas, bias is significant
only for vehicle categories. These results imply that scene-selective areas
show greater task dependence in representation of their nonpreferred
object categories compared to human-selective areas during divided
attention.

In MTþ, BI for human categories is 0:21� 0:08, and BI for vehicle
categories is non-significant (bootstrap test, p ¼ 0:341). A previous study
showed that MT þ represents categories that are semantically similar to
humans (e.g. body parts and animals) in addition to animate movement
(Huth et al., 2012). Thus, this result can be associated with semantic
selectivity of MT þ for categories that are similar to humans. In RET, BI
for human categories is non-significant (p ¼ 0:440), and BI for vehicle
categories is � 0:19� 0:13. Previous studies suggest that early visual
areas are selective for coherent movement and organized contours



Fig. 4. Bias in semantic representation during divided attention.(a) To assess the bias in semantic representation during divided attention, masked category
responses for the three attention tasks were projected onto individual subjects’ semantic spaces. The axes of the semantic space were derived as PCs of category
response profiles in the two single-target attention tasks. Projections onto the PCs were weighted by their proportion of explained variance to yield the semantic tuning
distributions. Semantic tuning distribution during divided attention was then regressed onto tuning distributions during the two single-target tasks. Regression weights
were used to calculate a bias index (BI). (b) BI in functional cortical areas (mean � sem across five subjects) for target categories (left), nontarget categories that are
similar to targets (middle), and nontarget categories that are dissimilar to targets (right). BIs for individual subjects are indicated by green dots in areas with sig-
nificant mean values, and by gray dots in areas with non-significant mean values. Hatched dots indicate non-significant BIs (bootstrap test, p > 0:05). Blue versus red
bars indicate bias toward “attend to humans” versus “attend to vehicles” tasks. Semantic representation of target categories in category-selective areas (FFA, EBA, PPA,
and RSC) is biased toward the task in which the preferred object-category is the sole search target. Representation in MT þ that encodes animate motion is biased
toward the “attend to humans” task. Bias is non-significant in early visual areas (RET), general object-selective area LOC, and attentional-control areas (IPS, FEF, SEF,
and FO; p > 0:05). Representation of nontarget categories is also biased toward the preferred target in FFA and PPA.
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Fig. 5. Bias in representation of human and
vehicle categories. BI for human categories (left),
and vehicle categories (right) in functional cortical
areas (mean � sem across five subjects). BIs for indi-
vidual subjects are indicated by green dots in areas
with significant mean values, and by gray dots in areas
with non-significant mean values. Hatched dots indi-
cate non-significant BIs (bootstrap test, p > 0:05).
Representations of both human and vehicle categories
in FFA are biased toward the “attend to humans” task.
Meanwhile, representation of vehicles but not humans
is biased toward the “attend to vehicles” task in PPA
(p ¼ 0:881). Representations of both of the target
categories are not significantly biased in attentional-
control areas in prefrontal cortex (p > 0:05). Repre-
sentation in IPS is biased in favor of the distractor
category.
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(Kourtzi et al., 2003; Altmann et al., 2003). A potential explanation for
the observed difference in BI for humans versus vehicles might be related
to systematic differences in low-level visual features between the two
categories. Vehicles generally possess rigid structure that leads to
well-defined contours and an affine motion model (Koller et al., 2005).
Thus, negative BI for vehicles in early visual areas might be associated
with strong selectivity for coherent motion and organized contours in
these areas.

Among the attentional-control areas, BI is significant for both human
and vehicle categories only in IPS (bootstrap test, p < 10�4). In IPS, BI is
�0:48� 0:13 for human categories, and 0:60� 0:14 for vehicle cate-
gories. This result indicates that in IPS, representation of human cate-
gories is biased toward “attend to vehicles” task, and representation of
vehicle categories is biased toward “attend to humans” task. Previous
studies suggest that IPS is part of a cortical network that enhances
detection of distractors (Greenberg et al., 2010; Mevorach et al., 2010;
Sakai et al., 2002; Bledowski et al., 2004). In line with these studies, our
finding here suggests that IPS enhances the representation of distractors
during category based visual search.

4. Discussion

In this study, we tested whether the biased competition hypothesis
can account for modulation of semantic representations during divided
attention. We fit a category model to characterize category responses of
single voxels during search for “humans”, “vehicles”, and “both humans
and vehicles”. We found that the category model explains significant
response variance in many voxels across ventral-temporal, parietal, and
prefrontal cortices. We estimated the semantic space underlying category
models, and then assessed semantic representations by projecting the
estimated category responses for the three search tasks onto the semantic
space.

4.1. Linearity of the semantic representation during divided attention

We find that a large portion of the variance in semantic tuning during
divided attention can be explained using a weighted linear combination
of tuning during isolated attention to individual targets. We find that
semantic tuning for target categories is more accurately predicted via the
weighted linear combination model compared to semantic tuning for
nontarget categories. In a recent study, we reported that attention shifts
semantic tuning for target categories to a higher degree compared to that
for nontarget categories (Çukur et al., 2013). Thus, our results can be
attributed to the higher degree of attentional tuning shift for target cat-
egories compared to that for nontarget categories.

Several previous studies have investigated differences in the level of
8

competition between strongly category-selective areas and areas without
a specific category preference. Reddy and Kanwisher (2007) and MacE-
voy and Epstein (2009) showed that response patterns to a pair of objects
can be better predicted by a linear combination of responses to constit-
uent objects in LOC compared to in FFA or PPA. In line with these studies,
here we find that semantic representation better conforms to the
weighted linear combination model in LOC compared to that in
category-selective areas. These results raise the possibility that semantic
representation may also be more linearly additive in attentional-control
areas which are not selective for any specific categories compared to
strongly category-selective areas (Çukur et al., 2013). Here we find that
semantic representations of target and nontarget categories during
divided attention are better explained using the weighted linear combi-
nation of representations during search for individual targets in
attentional-control areas compared to category-selective areas. Our re-
sults suggest that higher order areas that are not tuned for specific cat-
egories have a more flexible representation of natural scenes during
divided attention. Previous studies suggest that the level of representa-
tional competition increases from early visual cortex toward higher-level
visual areas in inferior temporal cortex (Kastner and Ungerleider, 2001).
Consistent with these reports, here we find that semantic representations
are less linear in early visual cortex and area MT þ compared to
higher-level visual areas in occipitotemporal and prefrontal cortices.

4.2. Bias in semantic representation during divided attention

4.2.1. Category-selective areas
The bias in the competition among representation of multiple objects

have been investigated in several previous studies. Reddy et al. (2009)
reported that BOLD responses to multiple static images of faces, houses,
shoes, or cars in category-selective areas, FFA and PPA, are biased toward
the preferred target. In line with this finding, here we find that semantic
representation of target categories during divided attention in category
selective areas FFA, EBA, RSC, and PPA is biased toward the preferred
category.

Moreover, we find that semantic representations of nontarget cate-
gories that are similar to targets in FFA and PPA are also biased toward
the preferred target. Furthermore, representation of nontarget categories
that are dissimilar to targets is biased in FFA and PPA, albeit to a lower
degree. In a previous study (Çukur et al., 2013), we reported in single
voxels within FFA and PPA that attention increases selectivity for
nontarget categories that are semantically similar to targets, whereas it
decreases selectivity for semantically-dissimilar nontarget categories. For
object-selective ROIs, this finding implies that attention modulates rep-
resentation of a category depending on its semantic similarity to the
target. Yet, Çukur et al. (2013) did not examine distributed semantic
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representations across these ROIs, and it did not question whether
attentional modulations depend on the interaction between the target
category and the preferred object category of an ROI (e.g., “humans” in
FFA and “vehicles” in PPA). Here we find that attention biases distributed
representation of nontarget categories across FFA and PPA toward the
preferred target (i.e., when the target matches the preferred category).
We also find that these attentional biases are stronger for
semantically-similar versus dissimilar nontarget categories. Taken
together, these results suggest that semantic similarity to preferred tar-
gets enhances the level of bias in semantic representation across
category-selective areas.

In human-selective areas, we find that the semantic representations of
target categories (both humans and vehicles) during divided attention is
biased toward the representation during the “attend to humans” task.
Meanwhile, in vehicle-selective areas, the representation of vehicles but
not humans is biased toward the representation during the “attend to
vehicles” task. This suggests a differential role for human- and vehicle-
selective areas in representing nonpreferred targets during divided
attention. A potential explanation of this result is that vehicle-selective
areas show greater task dependence in representation of nonpreferred
targets compared to human-selective areas (Grill-Spector et al., 2004).

4.2.2. Attentional-control areas
We did not observe bias in semantic representation of targets toward

any of the target categories in the prefrontal areas that are considered to
be part of the attentional-control network. This is expected considering
the lack of tuning to specific categories in these areas (Huth et al., 2012).
In IPS, we find that semantic representation of humans during divided
attention is biased toward the representation during the “attend to ve-
hicles” task and that the representation of vehicles during divided
attention is biased toward the representation during the “attend to
humans” task. Several previous studies suggest that areas in parietal
cortex including IPS enhance visual search by maintaining the repre-
sentation of distractors (Mevorach et al., 2010; Bledowski et al., 2004), in
addition to spatial guidance of attention toward targets (Ptak, 2012;
Preston et al., 2013). Consistent with this hypothesis, our results can be
interpreted to imply that IPS facilitates natural visual search by main-
taining representations of distractor categories.

4.3. Limitations and future work

Category-based visual search in natural scenes is a complex, high-
level task that likely involves multiple cognitive processes. Most previ-
ous studies on this topic have examined search on static natural images,
where the primary component of target detection is spatial visual search.
These studies reported that attention biases multi-voxel response pat-
terns in ventral-temporal cortex toward the response patterns for target
objects viewed in isolation (Martin, 2007; Peelen et al., 2009; Peelen and
Kastner, 2014). Our results here provide further evidence for similar
top-down biases in semantic representation during category-based visual
search in dynamic natural scenes. Note, however, that visual search on
natural movies involves search through both space and time due to the
dynamic nature of the stimulus. This dynamic search task might addi-
tionally involve preliminary processes associated with top-down modu-
lation of cortical representations (Peelen and Kastner, 2011), as well as
subsequent processes associated with working memory maintenance of
the search template (Downing, 2000; Moores et al., 2003; Downing and
Dodds, 2004). Further work is needed to functionally dissociate potential
contributions of these processes to representational biases during natural
visual search.

Natural stimuli contain correlations among various levels of
features (Hamilton and Huth, 2018). In particular, there might be
correlations among low-level visual features of natural scenes and
object categories within these scenes (Lescroart et al., 2015). Such
correlations can then bias the category responses that we estimated
here, which can lead to a biased assessment of semantic
9

representations. To minimize correlations between category features
and global motion-energy of the movie clips, we used a
motion-energy regressor in our modeling procedure. However, we do
not rule out the possibility that there might be residual correlations
between category features and intermediate features of the movie
stimuli, such as object shape characteristics (Op de Beeck et al.,
2008) and scene layout (Mullally and Maguire, 2011). Note that it is
perhaps impossible to create natural stimuli completely free from
these correlations. However, future studies may mitigate this prob-
lem by compiling more controlled natural stimuli that minimize
stimulus correlations while maintaining high variance in individual
categories.

Here, we employed category-based search tasks with relatively
distinct target object categories: “humans” and “vehicles”. We found
that semantic tuning profile during divided attention to two targets
can be well explained via a weighted linear combination of semantic
tuning profiles during isolated attention to individual targets. Thus,
the biased-competition hypothesis gives a compelling account for
the results outlined here. Yet, it is possible that nonlinear response
modulations are manifested with growing competition among search
targets (e.g., increased feature similarity among target categories,
higher number of targets). In such cases, alternative competition
models can be evaluated. A well-known theoretical account for
representational competition in vision is the normalization model of
attention (Reynolds and Heeger, 2009; Heeger, 1992). The normal-
ization model observes that single neurons have limited represen-
tational capacity for visual stimuli. It proposes that in conditions
where competing stimuli can not drive neurons to their saturation
point (e.g., gratings with low contrast levels), response to a pair of
stimuli is a weighted average of responses to individual stimuli. In
saturation conditions, however, response to a pair of stimuli is sub-
ject to a nonlinear normalization, where the normalization factor
depends on the pooled response across neighboring neurons. An
alternative model advocated for object representation is the hierar-
chical HMAX model (Riesenhuber and Poggio, 1999; Lee et al., 1999;
Roos et al., 2014). The HMAX model does not explicitly condition on
saturation conditions or lateral interactions with neighboring neu-
rons. Instead, MAX pooling operators are used across afferent re-
sponses to determine postsynaptic responses at each layer. This
pooling procedure can cause downstream neurons to be selectively
responsive to a specific object category, suggesting a
winner-takes-all framework for representational competition.

5. Conclusion

In summary, we present evidence for biased competition during vi-
sual search, that affects not only individual object representations but
also high-level semantic representations. This competition is evident
among target categories as well as nontarget categories within natural
scenes. Yet, the linearity and bias in representation of nontargets depend
on their semantic similarity to targets. Overall, these results help explain
the human ability to perform concurrent search for multiple targets in
complex visual environments.
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