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Abstract 

Multi-contrast MRI acquisitions of an anatomy enrich the magnitude of information available for 

diagnosis. Yet, excessive scan times associated with additional contrasts may be a limiting factor. Two 

mainstream approaches for enhanced scan efficiency are reconstruction of undersampled acquisitions 

and synthesis of missing acquisitions. In reconstruction, performance decreases towards higher 

acceleration factors with diminished sampling density particularly at high-spatial-frequencies. In 

synthesis, the absence of data samples from the target contrast can lead to artefactual sensitivity or 

insensitivity to image features. Here we propose a new approach for synergistic reconstruction-synthesis 

of multi-contrast MRI based on conditional generative adversarial networks. The proposed method 

preserves high-frequency details of the target contrast by relying on the shared high-frequency 

information available from the source contrast, and prevents feature leakage or loss by relying on the 

undersampled acquisitions of the target contrast. Demonstrations on brain MRI datasets from healthy 

subjects and patients indicate the superior performance of the proposed method compared to previous 

state-of-the-art. The proposed method can help improve the quality and scan efficiency of multi-contrast 

MRI exams.  

Keywords: generative adversarial network, synthesis, reconstruction, multi-contrast MRI, variable 

density.   



1 – Introduction  

Magnetic resonance imaging (MRI) is a preferred modality for assessment of soft tissues due the 

diversity of contrasts that it can provide. A typical MRI protocol comprises a set of pulse sequences that 

capture images of the same anatomy under different contrasts, with the aim to enhance diagnostic 

information. For instance, in neuroimaging protocols, T1-weighted images are useful for delineation of 

gray and white matter, whereas T2-weighted images are more useful for delineation of fluids and fat. 

Although acquisition of multiple distinct contrasts is desirable, it may not be feasible due to scan time 

limitations or uncooperative patients. Thus, methods for accelerating MRI acquisitions without 

compromising image quality are of great interest for multiple-contrast applications.  

The predominant approach for accelerated MRI relies on undersampled k-space acquisitions for scan 

time reduction, and on reconstruction algorithms for recovery of missing samples based on the collected 

evidence (i.e., acquired samples) [1]–[5]. Given the compressible nature of MR images, the state-of-the-

art framework for achieving this recovery is compressive sensing (CS) [3], [4]. CS methods commonly 

employ variable-density random undersampling in k-space to capture most of the energy in the MR 

image while ensuring low coherence of aliasing artifacts. The inverse problem of image reconstruction 

from sub-Nyquist sampled data is then solved with the help of additional regularization terms. These 

terms reflect prior information based on the assumption that MR images are sparse or compressible in a 

known transform domain (e.g., wavelet, total variation). Recent CS methods have further improved 

recovery performance by incorporating dictionary learning methods or deep neural networks to 

adaptively learn the sparsifying transform domains [6]–[14]. Despite the promise of CS-MRI, however, 

the evidence collected on the target MR image diminishes towards high acceleration factors. In turn, 

this degrades the recovery performance, and causes loss in particularly high-spatial-resolution image 

features that may be relevant for diagnosis. 

An entirely different approach to accelerated MRI is to perform fully-sampled acquisitions of a subset 

of the desired contrasts, and then to synthesize images of the missing contrast based on the collected 

one. Synthesis requires a learning-based framework where an intensity-based mapping between the 

target contrast and the source contrast is estimated using a collection of training image pairs in both 

contrasts, and then applied on test images [15]–[32]. A common learning method is based on 

compressive sensing that relies on the assumption that target patches can be expressed as sparse linear 

combinations of patches from the training images [24]. Recent synthesis methods have proposed 

architectures based on neural networks to learn direct nonlinear mappings between the source and target 

contrasts with enhanced accuracy [17], [26]–[28], [31], [32]. Note that, in contrast to CS-MRI, synthesis 

methods have access to high-spatial-frequency information in the fully-sampled source images, and to 

the extent that this information is shared across contrasts it can yield improved immunity against loss of 

spatial resolution in the target contrast. Yet, local inaccuracies may occur in synthesized images when 

the source contrast is less sensitive to differences in relaxation parameters of two tissues compared to 

the target contrast, or vice versa. For instance, inflammation can be more clearly delineated from normal 

tissues in T2-weighted as opposed to T1-weighted images. In such cases, synthesized images might 

contain artificial pathology or fail to depict existing pathology. 

Here we propose a new approach that that synergistically merges the compressed-sensing and synthesis 

for enhanced performance in accelerated MRI. The proposed approach takes as input either fully-

sampled or lightly undersampled acquisitions of the source contrast, and heavily undersampled 

acquisitions from one or more target contrasts. To recover images of the target contrast, it 

simultaneously leverages the relatively low-spatial-frequency information available in the collected 

evidence for the target contrast and the relatively high-spatial frequency information available in the 

source contrast. The input-to-output mapping is implemented using generative adversarial networks 

(GAN) that were recently shown to outperform traditional methods for image reconstruction and 

synthesis tasks [6]–[8], [13], [32]. The proposed reconstructing-synthesizing GAN (rsGAN) contains a 

generator network for estimating the target-contrast image given linear reconstructions of the 

undersampled images in the source and target contrasts; and a discriminator network to ensure that 

recovered images are as realistic as possible [33].  



We demonstrated the proposed approach on two separate datasets containing normal subjects, and one 

dataset containing patients suffering from high- or low-grade glioma. Two competing methods were 

considered: a pure reconstructing network (rGAN) that recovers the target-contrast image given 

undersampled images of the target contrast, and a pure synthesizing network (sGAN) that synthesizes 

the target-contrast image given undersampled images of the source contrast. Our results indicate that, 

rsGAN yields enhanced performance compared to both rGAN and sGAN. In particular, rsGAN enables 

higher acceleration factors compared to rGAN since it more reliably recovers high-spatial-frequency 

information. Compared to sGAN, rsGAN achieves improved reliability against artificial feature loss or 

leakage since it uses collected evidence from the target contrast to prevent hallucination. Overall, the 

proposed approach can successfully recover MR images of at acceleration factors up to 50x in the target 

contrasts, enabling a significant improvement in multi-contrast MRI.  

Following are our main contributions: 

1 – To our knowledge, this is the first GAN-based architecture that jointly reconstructs and synthesizes 

target contrasts to accelerate multi-contrast MRI acquisitions. 

2 – The proposed approach can enable high acceleration factors up to 50x by incorporating information 

from both source and target contrasts.  

3 – The proposed approach can successfully recover pathologies that are either missing in the source 

contrast or are not clearly visible in the undersampled acquisitions of the target contrast. 

4 – The proposed approach can jointly reconstruct and synthesize the target contrast even when the 

source contrasts are lightly undersampled. 

  



 

2 – Theory and Methods 

 

2.1 - Accelerated MRI 

 

Two mainstream approaches that can be used to accelerate MR acquisitions and enhance the diversity 

of acquired contrasts are reconstruction of a target contrast given randomly undersampled acquisitions 

of the same contrast, and synthesis of a target contrast based on fully-sampled acquisitions of a distinct 

source contrast. Both approaches incorporate prior information about image structure to improve the 

conditioning of the inverse problem of recovering images of the target contrast. However, they differ 

fundamentally in the type of prior information used. The problem formulations for reconstruction and 

synthesis are overviewed below.  

 

Reconstruction: In this case, MR acquisitions are accelerated commonly via variable-density random 

undersampling patterns: 

 

 ���� = ���   (1) 

 

where �� is the partial Fourier operator defined at the k-space sampling locations, and �� is the image 

of the target contrast, ��� are the acquired k-space data. The reconstruction task is then to recover the 

target image given the collected evidence (i.e., acquired data). Note that the problem in Eq. 1 is ill-

posed, thus successful recovery requires additional prior information about the image. In the CS 

framework, this prior information reflects the sparsity of the image in a known transform domain (i.e., 

wavelet, TV transforms). The prior can be incorporated into the inverse problem as a regularization 

term: 

 

 ��	 = arg min��  �‖���� − ���‖� + �(��) (2) 

 

where the first term enforces consistency of the reconstructed and acquired data in k-space, �(��) is 

the regularization term reflecting the prior, and � controls the relative weighting of data consistency 

against the prior. �(��) typically involves the l0 or l1-norm of transform coefficients.  

 

Recent studies have proposed neural-network methods to adaptively learn both nonlinear transform 

domains directly from MRI data and how to recover images from these domains. In the training stage, 

a large dataset of pairs of undersampled and fully-sampled acquisitions are leveraged to learn the 

network-based solution to the inverse problem:  

 

 ℒ���(�) = ��� ! ,��   ‖#(��$� ; �) − ��$‖& (3) 

 

where ��$�  and ��$ represent undersampled and fully-sampled training images, #(��$� ; �) is the 

reconstructed output of the neural network based on network parameters �, and ‖. ‖& denotes lp-norm 

(where p is typically 1 or 2). Once the network parameters that minimize the objective in Eq. 3 have 

been learned, the following optimization problem can be cast to obtain reconstructions of undersampled 

acquisitions: 

 

 ��	 = arg min��   �‖���� − ���‖� + ‖#(���; �∗) − ��‖� (4) 

 

where ��� is the undersampled image, #(���; �∗) is the reconstruction by the trained network with 

parameters �∗, and ��	  is final recovered image. In Eq. 4, the first term again enforces consistency of 

reconstructed and acquired data. The second term is analogous to �(��) in Eq. 2, and it enforces 

consistency of the recovered image to the network reconstruction.  

 



Synthesis: In the synthesis case, fully-sampled images of a source contrast are assumed to be available. 

The task is then to recover target-contrast images (m1) given source-contrast images (m2) of the same 

anatomy. A learning-based procedure is used to estimate a mapping between the source and target 

contrast images. In the training stage, a large dataset of pairs of fully-sampled images from the source 

and target contrasts are used (��$ , ��$ ). In the CS-based synthesis framework, patch-based dictionaries 

(Φ�, Φ�) are formed for both source and target contrasts using ��$ and ��$. These dictionaries are 

analogous to the sparsifying transform domains used in CS reconstructions. The aim is to express each 

patch in the source contrast images m2 as a sparse linear combination of transform coefficients of the 

corresponding dictionary atoms:  

 

 *(+) = arg min,(-)   ‖��(+) − Φ�. *(+)‖� + ‖*(+)‖� (5) 

 

where  *(+) is the learned combination coefficients for the jth patch, ��(+) denotes the jth patch in the 

source contrast, and Φ� denotes the dictionary formed using patches from ��$. The first term ensures 

consistency of the synthesized patch to the true patch. The second term enforces sparsity of the vector 

of combination coefficients. Once the combination is learned, it can be used to synthesize target contrast 

images : 
 

 ��	 (+) = Φ�. *(+) (6) 

 

where Φ� denotes the dictionary formed using patches from ��$, and ��	 (+) is the jth patch of the final 

synthesized image.  

 

Recent studies have proposed neural-network methods to directly learn an adaptive, non-linear mapping 

from the source contrast to the target contrast. In the training stage, network parameters are optimized 

based on a loss function that reflects the error between the network output and the true target image:  

 

 ℒ/01$2(�) = ��� ,�3   ‖#(��$; �) − ��$‖& (7) 

 

where ��$ and ��$ represent pairs of source and target images, and #(��$; �) is the mapping from 

source to target contrast characterized by parameters �. Once the network parameters that minimize the 

objective in Eq. 7 have been learned, the network output can be directly calculated to obtain the synthesis 

results:  

 

 ��	 = #(��; �∗) (8) 

 

where ��	  is the prediction using the mapping #(��; �∗) with parameters �∗. Unlike the reconstruction 

task, here there is no evidence that has been collected about the target contrast. Therefore, no 

optimization procedures are needed for synthesis in the testing stage.  

 

2.2 – Joint reconstruction-synthesis via conditional GANs 

 

In the reconstruction task, the inverse problem solution uses undersampled acquisitions of the target 

contrast as evidence, and intrinsic image properties such as sparsity as prior. As the acceleration factor 

grows, evidence becomes scarce particularly towards high spatial frequencies that are sparsely covered 

by variable-density patterns. This in turn elevates the degree of aliasing artifacts; and if heavier 

weighting is given to the prior as a remedy, important features may be lost in the recovered images. 

Meanwhile, in the synthesis task, the inverse problem solution uses fully-sampled acquisitions of a 

distinct source contrast of the same anatomy as a prior. When the source and target contrasts exhibit 

similar levels of sensitivity to differences in tissue parameters, this prior can enable successful solution 

of the inverse problem. However, when the source and target show differential sensitivity, then features 

that are not supposed to be in the target may leak from the source onto the synthesized image, or features 

that must be present in the target may be missed.  

 



To address the limitations of pure reconstruction or synthesis, we proposed to synergistically combine 

the two approaches with the aim to enhance recovery of multi-contrast MRI images. The proposed 

approach allows for fully-sampled or lightly undersampled acquisitions of the source contrasts, and 

lightly to heavily undersampled acquisitions of the target contrasts. Given  4 target contrasts and 5 − 4 

source contrasts, the joint recovery problem can be formulated as: 

 

 
�6�,�,7,…..,1 = min ��,3,..,9 � :;���<2� − �<�;�

=
<>� + � : ;���-?� − �-�;�

1
->=@�+ �A��2�, … , �=2�, �=@�?� , … , �1?�B 

(9) 

 

where �A��2�, … , �=2�, �=@�?� , … , �1?�B is a regularization term based on prior information, �<2� is the 

ith contrast that is heavily undersampled (i.e., target contrast), and �-?� is jth contrast that is lightly 

undersampled (i.e., source contrast), and �<� denotes the acquired data for the ith contrast. We recast Eq. 

9 using a neural-network based formulation:  

 

 

�6�,�,7,…..,1 = min ��,3,..,9 � :;���<2� − �<�;�
=

<>� + � : ;���<?� − �-�;�
1

->=@�
+ :;#A��2�, … , �=2�, �=@�?� , … , �1?�; �∗B[D] − �?;�

1
?>�  

(10) 

 

Here, multiple separate channels for network output are considered since multiple contrast images can 

be recovered simultaneously. In Eq. 10, #A��2�, … , �=2�, �=@�?� , … , �1?�; �∗B[D] denotes the lth channel 

of the network output, among a total of n channels for the entire set of contrasts. The first two terms 

respectively enforce the consistency of reconstructed data to acquired data in the target and source 

contrasts. The last term enforces consistency of the network outputs to the recovered images. Solution 

of Eq. 10 yields estimates of the images for each contrast separately as: 

 

 

�<�(4) = F�G#A��2�, … , �=2�, �=@�?� , … , �1?�; �∗B[H]I(4) + ��<�(4)1 + � , HK 4 L M
�G#A��2�, … , �=2�, �=@�?� , … , �1?�; �∗B[H]I(4),           NOℎQRSHTQ  

 �6 < = �U�{�<�} 

 

(11) 

   

where �<� denotes the k-space representation of the image for the ith contrast, M is the set of acquired k-

space samples, � is the Fourier transform operator, and �U� is the inverse Fourier transform operator. 

The solution stated above performs two subsequent projections on the input images. The first projection 

takes undersampled acquisitions to generate the network predictions. The second projection enforces 

data consistency between data sampled that were originally acquired and those that are predicted by the 

network. 

 

Based on the recent progress by generative adversarial networks in MR image synthesis and 

reconstruction tasks, we chose to build the joint recovery network using a conditional GAN architecture. 

Our network contains two subnetworks: a generator and a discriminator. The task of the generator is to 

learn a mapping from undersampled acquisitions onto fully-sampled acquisitions of source and target 

images. Meanwhile, the task of the discriminator is to differentiate between the images predicted by the 

generator and the actual images. As such, an adversarial loss function is typically used to train both 

subnetworks:  

 

 ℒXYZ(�[, �\) = �]^[DN_`(]^; �[)] + �]^,a[log (1 − `(]^, #(d; �\)))] (12) 



 

where ]^ represent the MR images aggregated across 5 contrasts (��, ��, … , �1) in the training 

dataset, # is the generator with parameters �\, ` is the discriminator with parameters �[, d is the latent 

variable and  ℒXYZ(�[, �\) is the adversarial loss function. The discriminator tries to maximize while 

the generator tries to minimize the adversarial loss. Ideally the generator should be able to generate 

images that the discriminator cannot separate from real images. Here, to prevent vanishing gradients 

problems, we used a modified loss as in LSGAN [34]:  

 

 ℒXYZ(�[, �\) = �]^[(`(]^; �[) − 1)�] + �a[ ̀ (#(d; �\))�] (13) 

 

Note that the images of the target contrast are statistically dependent on both collected evidence in the 

target contrast and well as images of the same anatomy under the source contrast. To better capture these 

dependencies, a conditional GAN model was considered that takes as input both undersampled 

acquisitions of the source and target contrasts [35]. The loss function in Eq. 13 is then reformulated as: 

 

 ℒ�e1YXYZ(�[, �\) = �]^[(`(]^; �[) − 1)�] + �]f̂g,]ĥg[ ̀ (#(]f̂g, ]ĥg; �\))�]] (14) 

 

where ]f̂g represents the heavily undersampled acquisitions aggregated across 4 target contrasts 

(��, ��, … , �=), and ]ĥg represents the lightly undersampled acquisitions aggregated across 5 − 4 

source contrasts (�=@�, �=@�, … , �1). The latent variable d was omitted here because it was observed 

to have insignificant effect on the network performance. Since multiple images are to be recovered by 

the network model, an independent output channel was assigned to each contrast. To ensure reliable 

recovery in each channel, a pixel-wise loss function was incorporated to the generator: 

 

 ℒi�(�\) = �]^,]f̂g,]ĥg[;#(]f̂g, ]ĥg; �\) − ]^;�] (15) 

 

The adversarial and pixel-wise losses were finally combined to train the proposed reconstructing-

synthesizing GAN (rsGAN) model:  

 

 
ℒ�/\Xj(�[, �\) = �&ℒi�(�\) + ℒ�e1YXYZ(�[, �\) 

 
(16) 

 

where �& is the relative weighting of the pixel-wise loss function. 

  

2.3 – Competing methods 

 

To evaluate the effectiveness of rsGAN, we compared it against to other GAN architectures. The first 

network was trained to only perform synthesis of the target-contrast images based on the respective 

source-contrast images. Source-contrast images were taken to be fully-sampled, high-quality images. 

We will refer to this network as the synthesizing GAN (sGAN). The second network was trained to only 

perform reconstruction of the target-contrast images based on undersampled acquisitions of the target 

contrast. For each target contrast a separate network was trained to perform reconstruction. We will refer 

to this network as the reconstructing GAN (rGAN).  

 

2.4 – MRI Datasets 

 

We demonstrated the proposed approach on three different public datasets containing multi-contrast 

MRI images. The public datasets MIDAS [36] and IXI (http://brain-development.org/ixi-dataset/)  

comprised images collected in healthy normals. BRATS 

(https://sites.google.com/site/braintumorsegmentation/home/brats2015) comprised images collected in 

patients with low-grade glioma (LGG) or high-grade glioma (HGG). Relevant details about each dataset 

are given below. 

 



MIDAS dataset: T1-weighted and T2-weighted images in the MIDAS dataset were considered. Data 

from 62 subjects were analyzed, where 47 subjects were used in the training stage and 15 subjects were 

reserved for the testing stage. Within each volumetric image set in individual subjects, approximately 

100 central axial cross-sections that contained brain tissues and that were relatively free of aliasing 

artifacts were manually selected. The scan protocols were as follows: for T1-weighted images, 3D 

gradient-echo sequence, repetition time (TR)=14ms, echo time (TE)=7.7ms, flip angle=250, volume 

size=256x176x256, voxel dimensions=1mm×1mm×1mm; for T2-weighted images, 2D spin-echo 

sequence, repetition time (TR)=7730ms, echo time (TE)=80ms, flip angle=1800, volume 

size=256x192x256, voxel dimensions=1mm×1mm×1mm. 

 

IXI dataset: T1-weighted, T2-weighted and PD-weighted images in the IXI dataset were considered. 

Data from 37 subjects were analyzed, where 28 subjects were used in the training stage and 9 subjects 

were reserved for the testing stage. Within each volumetric image set in individual subjects, 

approximately100 axial cross-sections that contained brain tissues and that were free of artifacts were 

manually selected. The scan protocols were as follows: for T1-weighted images, repetition time 

(TR)=9.813ms, echo time(TE)=4.603ms, flip angle=80, volume size=256×256×150, voxel 

dimensions=0.94mm×0.94mm×1.2mm; for T2-weighted images, repetition time (TR)=8178ms, echo 

time(TE)=100ms, flip angle=900, volume size=256×256×130, voxel dimensions= 

0.94mm×0.94mm×1.2mm; for PD-weighted images, Repetition time (TR)=8178ms, echo 

time(TE)=8ms, flip angle=900, volume size=256×256×130, voxel 

dimensions=0.94mm×0.94mm×1.2mm. 

 

BRATS dataset: T1-weighted and T2-weighted images in the BRATS dataset were considered. Data 

from 40 subjects were analyzed, where 30 subjects were used in the training stage and 10 subjects were 

reserved for the testing stage. Within each volumetric image set in individual subjects, approximately 

100 central axial cross-sections that contained brain tissues and that were relatively free of aliasing 

artifacts were manually selected. Since the data were acquired in various different sites, no single scan 

protocol existed.  

 

2.5 - Image registration 

 

Since the images in the MIDAS and IXI datasets were unregistered, these images were registered before 

training and testing. For the MIDAS dataset, T2-weighted images of each subject were registered onto 

T1-weighted images of the same subject using a rigid transformation. Images were registered based on 

mutual information loss. For the IXI dataset T2- and PD-weighted images of each subject were registered 

onto T1-weighted images of each subject using an affine transformation. Images were registered based 

on mutual information loss. Registrations were carried out using FSL [37], [38]. 

 

2.6 - Undersampling Patterns 

 

For heavily undersampled acquisitions of the target contrast, we examined acceleration factors in a broad 

range R=10x, 20x, 30x, 40x, 50x. For lightly undersampled acquisitions of the source contrast, we 

examined acceleration factors in a relatively limited range R=1x, 2x, 5x. Sampling patterns were 

generated using the variable-density Poisson disc sampling method [5]. Fully-sampled images were 

Fourier transformed, and then retrospectively sampled using the generated patterns. For each dataset, a 

total of 100 distinct random patterns were generated for use during the training stage, and a separate set 

of 100 random patterns were generated for use during the testing stage. The sampling density profiles 

across k-space varied for different values of R. The density profiles were designed based on a polynomial 

function with the following radius of fully-sampled calibration region (kr) and polynomial degree (d): 

for 2x≤R≤10x, kr = 0.14, d = 5; for R=20x, kr = 0.10, d = 9; for R=30x, kr = 0.10, d = 10; for R=40x, 

kr = 0.10, d = 15; for R=50x, kr = 0.06, d = 20. 

 

2.7 – Model Training Procedures 

 

All GAN-based models (rsGAN, sGAN and rGAN) were trained using an identical set of procedures. 



To train each conditional GAN, we adopted the generator and discriminator from [39], [40]. The 

generator consisted of the following layers connected in series: Convolution layer (kernel-size=7, 

output-features=64, stride=1, activation=ReLU), convolutional layer (kernel-size=3, output-

features=64, stride=2, activation=ReLU), convolutional layer (kernel-size=3, output-features=256, 

stride=2, activation=ReLU), 9x resnet blocks (kernel-size=3, output-features=256, stride=1, 

activation=ReLU), fractionally-strided convolutional layer (kernel-size=3, output-features=128, 

stride=2, activation=ReLU), fractionally-strided convolutional layer (kernel-size=3, output-

features=64, stride=2, activation=ReLU), up-sampling convolutional layer (kernel-size=3, output-

features=128, stride=2, activation=ReLU), convolutional layer (kernel-size=7, output-features=1, 

stride=1, activation=tanh). The discriminator consisted of the following layers connected in series: 

Convolution layer (kernel-size=4, output-features=64, stride=2, activation=leakyReLU), Convolution 

layer (kernel-size=4, output-features=128, stride=2, activation=leakyReLU), Convolution layer (kernel-

size=4, output-features=256, stride=2, activation=leakyReLU), Convolution layer (kernel-size=4, 

output-features=512, stride=1, activation=leakyReLU), Convolution layer (kernel-size=4, output-

features=1, stride=1, activation=none). 

 

Generator and discriminator networks were trained for 200 epochs using the Adam optimizer [41], with 

decay rates for the first and second moment estimates set as 0.5 and 0.999. For the generator, the learning 

rate was set as 0.0002 for the initial 100 epochs and then linearly decayed to 0. For the discriminator, 

the learning rate was set as 0.0001 for the first 100 epochs and then linearly decayed to 0 during the 

remaining epochs. Dropout regularization was used to enhance the generalizability of the network 

model, with a dropout rate of 0.5. Instance normalization was applied [42]. All model weights were 

randomly initialized based on a normally-distributed variable with 0 mean and 0.02 standard deviation. 

Relative weighting of the pixel-wise loss function against the adversarial loss function (�&) was set to 

100. Relative weighting of data consistency against the prior (�) was set to infinity. Note that the 

networks receive as inputs Fourier reconstructions of undersampled acquisitions that are complex 

valued. For each input contrast, two channels were designated to represent the real and imaginary image 

components. 

 

During the testing phase, for the case where the source contrasts were lightly undersampled, first a 

network was trained to reconstruct source-contrast images from undersampled data of the source 

contrast.  The reconstructed images were then fed to rsGAN that was trained to synergistically 

reconstruct-synthesize images of the target contrasts from fully sampled images of the source contrasts 

and highly undersampled images of the target contrasts, and sGAN that was trained to synthesize images 

of the target contrasts from fully sampled images of the source contrasts. 

 

2.8 – Experiments 

 

To evaluate the comparative performance of the proposed approach, rsGAN, rGAN and sGAN were 

individually trained and tested on multi-contrast MRI datasets. Theoretically, as R approaches 1x, 

rsGAN and rGAN should show nearly identical performance that is superior to sGAN since sGAN has 

no evidence collected about the target contrast. As R goes to infinity, rsGAN and sGAN should show 

nearly identical performance that is superior to rGAN, since no evidence from the target contrast will 

be available to any of the networks. In intermediate R values, we reasoned that rsGAN would outperform 

rGAN in terms of reliability in recovery of high-frequency information since variable-density patterns 

suboptimally sample high spatial frequencies in the target contrast. We also reasoned that rsGAN would 

outperform sGAN especially when the source and target contrasts showed differential sensitivity to 

differences in tissue parameters. Based on these notions, we measured the performance of all three 

methods across a broad range of acceleration factors. 

 

In both MIDAS and BRATS datasets, we considered two main scenarios. First, T1-weighted acquisitions 

were taken as the source contrast (R=1x), and T2-weighted acquisitions were taken as the target contrast 

(R=10x, 20x, 30x, 40x, 50x). Second, T2-weighted acquisitions were taken as the source (R=1x), and 

T1-weighted acquisitions were taken as the target (R=10x, 20x, 30x, 40x, 50x). 

 



Two distinct scenarios were examined in the IXI dataset. First, T1-weighted acquisitions were taken as 

the source contrast (R=1x), and both T2- and PD-weighted acquisitions were taken as the target contrasts 

(R=10x, 20x, 30x, 40x, 50x). Since T2-and PD-weighted acquisitions are typically performed using 

similar sequences, the acceleration factors for these two contrasts were always matched. Second, the 

source T1-weighted acquisitions were lightly undersampled (R=2x, 5x), and T1-, T2-, and PD-weighted 

images were jointly recovered.  

 

All network models and conventional reconstruction and synthesis techniques were trained and tested 

on the same instances of data and undersampling patterns. To quantitatively assess the quality of 

recovered images, the fully-sampled reference images were used. All images were first normalized to 

the range [0 1]. Then peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) 

were calculated between the recovered and reference images. Statistical significance of differences in 

PSNR and SSIM between methods were assessed via a nonparametric Wilcoxon signed-rank test.  

  



3 – Results 

To demonstrate the proposed approach, rsGAN, rGAN and sGAN were individually trained and tested 

on multi-contrast MRI datasets for a broad range of acceleration factors (R). We first considered two 

separate models on the MIDAS dataset: a model to recover T2-weighted images given T1-weighted 

images as source contrast, and another to recover T1-weighted images given T2-weighted images as 

source contrast. Tables I and II list the respective PSNR measurements for each model, and Fig. 2 

illustrates performance as a function of R. In T2-weighted image recovery, rsGAN outperforms both 

rGAN and sGAN in all examined cases (p<0.01), except for rGAN at R=10x where the competing 

methods perform similarly. Overall, rsGAN achieves 1.73±1.01 dB (mean±std across R) higher PSNR 

and 4.4±2.6 % higher SSIM than rGAN, and 3.25±1.62 dB higher PSNR and 4.0±2.3 % higher SSIM 

than sGAN. In T1-weighted image recovery, rsGAN outperforms both rGAN and sGAN in all examined 

cases (p<0.01), except for rGAN at R=20x where rGAN performs similarly in terms of SSIM. Overall, 

rsGAN achieves 1.10±0.63 dB higher PSNR and 4.8±3.2 % higher SSIM than rGAN, and 2.96±1.01 

dB higher PSNR and 5.2±2.0 % higher SSIM than sGAN. 

T2- and T1-weighted images in the MIDAS dataset recovered while R is varied from 10x to 50x are 

displayed in Figs. 3 and 4, respectively. Representative T2- and T1-weighted images recovered with ZF, 

rGAN, sGAN and rsGAN at R=50x are shown in Fig. 5. As expected, the similarity between rsGAN 

and rGAN results increases towards R=10x, and rsGAN and that between rsGAN and sGAN increases 

towards R=50x. That said, rsGAN recovers images of higher visual quality and acuity than both 

competing methods, particularly at intermediate R values. These results indicate that the incorporation 

of a fully-sampled acquisitions of the source contrast enables rsGAN to more reliably recover high-

frequency information compared to rGAN, and that the use of evidence collected on the target contrast 

ensures that rsGAN yields more accurate recovery compared to sGAN.  

Next, we demonstrated the proposed method on a dataset acquired in patients with high- or low-grade 

gliomas. We considered two models on the BRATS dataset: a model to recover T2-weighted images 

given T1-weighted images, and another to recover T1-weighted images given T2-weighted images. 

Tables III and IV list the respective PSNR values, and Fig. 6 illustrates model performance as a function 

of R. In T2-weighted image recovery, rsGAN outperforms both rGAN and sGAN in all examined cases 

(p<0.01), except for rGAN at R=10x and 20x where the competing methods perform similarly. Overall, 

rsGAN achieves 1.12±0.87 dB higher PSNR and 3.9±3.5 % higher SSIM than rGAN, and 6.14±1.87 

dB higher PSNR and 3.4±3.7 % higher SSIM than sGAN. In T1-weighted image recovery, rsGAN 

competing methods (p<0.01), except for rGAN at R=20x where rGAN performs similarly in terms of 

PSNR. Overall, rsGAN achieves 1.78±0.84 dB higher PSNR and 4.8±3.2 % higher SSIM than rGAN, 

and 5.83±1.71 dB higher PSNR and 2.3±3.0 % higher SSIM than sGAN.  

Representative T2- and T1-weighted images in the BRATS dataset recovered with ZF, rGAN, sGAN and 

rsGAN at R=50x are shown in Fig. 7. Similar to the assessment on the previous dataset with normal 

subjects, rsGAN recovers images of higher visual quality and acuity than competing methods, 

particularly at intermediate R values. Note that multi-contrast images can show differential sensitivity 

to tumor tissue, where tumors can be more easily delineated in T2- versus T1-weighted images 

particularly in patients with low-grade glioma. As a result, sGAN suffers from either loss of features in 

the target contrast (e.g., during recovery of T2-weighted images) or synthesis of artefactual features (e.g., 

during recovery of T1-weighted images). Meanwhile, rGAN suffers from excessive loss of high spatial 

frequency information at high R. In comparison, rsGAN achieves higher spatial acuity while preventing 

feature losses and artefactual synthesis. Thus, the rsGAN method enables more reliable and accurate 

recovery when the source contrast is substantially less or more sensitive to differences in relaxation 

parameters of two tissues compared to the target contrast. 

Lastly, we demonstrated the utility of rsGAN to recover multiple target contrasts simultaneously. The 

specific model tested on the IXI dataset was aimed to recover both T2- and PD-weighted images given 



T1-weighted images as source contrast. We examined the effect of light undersampling performed on 

the source contrast (RT1=1x, 2x, 5x) in addition to heavy undersampling on the target contrasts (R=10x, 

20x, 30x, 40x, 50x).  Tables V and VI list the PSNR and SSIM measurements for T2- and PD-weighted 

images, respectively. Figure 8 illustrates model performance as a function of RT1 and R. In T2-weighted 

recovery, rsGAN (RT1=1x) outperforms rGAN in all examined cases (p<0.01). The rsGAN method also 

outperforms sGAN in terms of PSNR at all R (p<0.01). Overall, rsGAN achieves 2.84±1.01 dB higher 

PSNR and 10.1±4.7 % higher SSIM than rGAN, and 2.88±1.69 dB higher PSNR than sGAN. In PD-

weighted image recovery, rsGAN again outperforms rGAN in all examined cases, and it outperforms 

sGAN in terms of PSNR at all R (p<0.01). Overall, rsGAN achieves 2.22±0.58 dB higher PSNR and 

11.0±4.7 % higher SSIM than rGAN, and 2.23±1.63 dB higher PSNR than sGAN. In the IXI dataset, a 

comparison of SSIM values of rsGAN versus sGAN does not yield consistent results. As expected, the 

performance of rsGAN gradually decreases for higher values of RT1. However, even at RT1=5 rsGAN 

outperforms both rGAN and sGAN in terms of PSNR across all R.  

Representative T2- and PD-weighted images in the IXI dataset recovered with ZF, rGAN, sGAN and 

rsGAN at RT1=2x, R=50x are shown in Fig. 9. The rsGAN method yields sharper images and improved 

suppression of aliasing artifacts compared to rGAN and sGAN. Importantly, these improvements are 

apparent even when the source contrast acquisitions are accelerated.  

  



4 – Discussion 

A synergistic reconstruction-synthesis approach based on conditional GANs was presented for highly 

accelerated multi-contrast MRI. In this approach, several source- and target-contrast acquisitions 

accelerated to various degrees are taken as input, and high-quality images for individual contrasts are 

then recovered. The proposed rsGAN method yielded superior recovery performance against state-of-

the-art reconstruction and synthesis methods in three public MRI datasets. While rsGAN was 

demonstrated for multi-contrast MRI here, it may also offer improved performance in recovery of 

images in accelerated multi-modal datasets.   

 

Several previous studies considered joint reconstructions of multi-contrast acquisitions to better use 

shared structural information among contrasts. In the CS framework, a typical scenario involves multiple 

acquisitions with nearly identical acceleration rates [43]–[45]. Undersampled data are jointly processed, 

and a joint-sparsity regularization term improves recovery of shared features across contrasts. Another 

scenario involves the fully-sampled acquisition of a reference contrast that is then used as a structural 

prior for other contrasts [46]. Prior-guided reconstructions use regularization terms that enforce 

consistency of the magnitude and direction of image gradients across distinct contrasts. These previous 

approaches yield enhanced quality over independent processing of each contrast. However, hand-crafted 

regularization terms based on transforms such as total variation or wavelet reflect often suboptimal 

assumptions about structural similarity among separate contrasts. The proposed rsGAN method instead 

employs a data-driven approach to learn to utilize information from source contrast during recovery of 

target contrasts.  

 

A recent study proposed a learning-based method for joint reconstruction of multi-contrast MRI data 

[43]. Acquisitions for separate contrasts were accelerated at identical rates. A convolutional neural 

network architecture was used with a subset of network weights shared across contrasts to better capture 

structural similarities among contrasts. While that previous method was shown to outperform 

conventional CS reconstructions, it is a pure reconstruction approach that can suffer from scarce 

sampling of high spatial frequencies at high acceleration rates. In contrast, rsGAN employs detailed 

structural information in a source contrast to enhance the recovery of high-frequency samples in target 

contrasts. Since the source acquisitions are fully-sampled or lightly undersampled, rsGAN shows 

improved reliability against losses in resolution. Furthermore, GANs have been shown to better learn 

the distribution of high-spatial-frequency information compared to conventional network architectures.  

 

The synthesis framework is an alternative for recovery of images of a target contrast, where data are 

only available in a different source contrast. A powerful approach is to construct dictionaries from multi-

resolution image patches, and to learn a mapping between the source and target dictionaries [15], [16], 

[19], [20], [24]. Segregation of the dictionary extraction and mapping stages might yield suboptimal 

performance. Network-based approaches offer a remedy to this problem by unifying the two stages [17], 

[26]–[28]. We recently proposed GAN-based synthesis for multi-contrast MRI that yielded enhanced 

performance compared to conventional methods [31]. Yet, due to lack of evidence on the target contrast, 

a pure synthesis approach can suffer from from artificial sensitivity or insensitivity to image features. 

The rsGAN method, on the other hand, always collects a moderate to small amount of evidence. This 

helps avoid artefactual feature leakage from the source to the target contrast or loss of target-contrast 

features that are not apparent in the source contrast. 

 

Several technical developments are viable for improving the current implementation of the proposed 

method. First, the model can be generalized to simultaneously process multiple neighboring cross-

sections in addition to multiple contrasts. Correlated tissue structure across cross sections might 

enhanced recovery despite the increase in model complexity. Second, when multiple source contrasts 

are present, a weight sharing method can be used to enforce a shared latent representation among 

contrasts for improved performance. Lastly, a cycleGAN-based model [40] might be implemented to 

allow for learning on unpaired multi-contrast MRI datasets that are relatively more available than paired 

datasets.   



5 – Conclusion 

We proposed a synergistic reconstruction-synthesis method for accelerated multi-contrast MRI based 

on conditional generative adversarial networks. End-to-end trained GANs are used to recover high-

quality images of target and source contrasts given undersampled acquisitions. Unlike pure 

reconstruction, rsGAN uses high-spatial-frequency prior information in the source contrast to enhance 

recovery of the target contrast. Unlike pure synthesis, rsGAN bases recovered images on evidence 

collected through heavily undersampled acquisitions of the target contrast. The proposed method 

outperforms state-of-the-art reconstruction and synthesis methods, with enhanced recovery of high-

frequency tissue structure, and improved reliability against feature leakage or loss. The rsGAN method 

holds great promise for highly accelerated multi-contrast MRI in clinical practice. 
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Figures 

 

Figure 1. The rsGAN method is based on a conditional adversarial network with a generator # and a 

discriminator D. Given a set of fully-sampled or lightly undersampled acquisitions of one or more source 

contrasts (mlu), and highly undersampled acquisitions of one or more target contrasts (mhu), G learns to 

recover realistic high-quality target-contrast images via synergistic reconstruction-synthesis. This 

recovery aims to minimize a pixel-wise loss function and an adversarial loss function. Meanwhile, D 

learns to discriminate between synthetic (G(mlu, mhu)) and real (m) pairs of multi-contrast images by 

maximizing the adversarial loss function.  

 

  



  

Figure 2. The proposed rsGAN method was demonstrated for synergistic reconstruction-synthesis of 

T1- and T2-weighted images from the MIDAS dataset. The acquisition for the source contrast was fully 

sampled, and the acquisition for the target contrast was undersampled by R=10x, 20x, 30x, 40x, 50x. 

PNSR was measured between recovered and fully-sampled reference target-contrast images. (a) 

Average PSNR across test subjects for rsGAN, rGAN and sGAN when T1 is the source contrast and T2 

is the target contrast. (b) Average PSNR when T2 is the source contrast and T1 is the target contrast. The 

performance of sGAN remains constant across R since it does not use any evidence from the target-

contrast acquisitions. As expected, the performance of both rGAN and rsGAN gradually decrease for 

higher values of R where the evidence from the target contrast becomes scarce. However, rsGAN 

performs well even at very high acceleration factors, and it outperforms both rGAN and sGAN across 

all R.   

  



 

Figure 3. T2-weighted images in the MIDAS dataset were recovered from heavily undersampled 

acquisitions (R=10x, 20x, 30x, 40x, 50x). The acquisition for the source contrast (T1-weighted) was 

fully sampled. Target-contrast images recovered by (a) ZF (zero-filled Fourier reconstruction), (b) 

rGAN, (c) rsGAN. As the value of R increases the performance of rGAN degrades significantly. 

Meanwhile, rsGAN maintains high-quality recovered images due to use of additional information from 

the source contrast. Regions with enhanced recovery in rsGAN are marked with arrows.  

 

  



  

Figure 4. T1-weighted images in the MIDAS dataset were recovered from heavily undersampled 

acquisitions (R=10x, 20x, 30x, 40x, 50x). The acquisition for the source contrast (T2-weighted) was 

fully sampled. Target-contrast images recovered by (a) ZF, (b) rGAN, (c) rsGAN. As the value of R 

increases the performance of rGAN degrades significantly. Meanwhile, rsGAN maintains high-quality 

recovered images due to use of additional information from the source contrast. Regions with enhanced 

recovery in rsGAN are marked with arrows.   

 

 

  



 

  

Figure 5. Multi-contrast images in the MIDAS dataset were recovered, where the source contrast was 

fully sampled and the target contrast was undersampled at R=50x. Images were recovered using ZF, 

sGAN, rGAN and rsGAN. (a) Recovered T2-weighted images are shown along with the fully-sampled 

reference image and the source-contrast image. (b) Recovered T1-weighted images are shown along 

with the fully-sampled reference image and the source-contrast image. rsGAN yields visually accurate 

recovery of the target-contrast image compared to sGAN and rGAN. Sample regions that are better 

recovered by rsGAN are marked with arrows.  

 

  



  

Figure 6. The proposed rsGAN method was demonstrated for synergistic reconstruction-synthesis of 

T1- and T2-weighted images from the BRATS dataset. The acquisition for the source contrast was fully 

sampled, and the acquisition for the target contrast was undersampled by R=10x, 20x, 30x, 40x, 50x. 

PNSR was measured between recovered and fully-sampled reference target-contrast images. (a) 

Average PSNR for rsGAN, rGAN and sGAN when T1 is the source contrast and T2 is the target contrast. 

(b) Average PSNR when T2 is the source contrast and T1 is the target contrast. As expected, the 

performance of sGAN remains constant across R, whereas the performances of rGAN and rsGAN 

gradually decrease for higher values of R. Meanwhile, rsGAN outperforms rGAN at all R, and the 

performance difference between the two methods increases for higher R. The rsGAN method also 

outperforms sGAN in all cases.  

  



 

 

Figure 7. Multi-contrast images in the BRATS dataset were recovered, where the source contrast was 

fully sampled and the target contrast was undersampled at R=50x. Images were recovered using ZF, 

sGAN, rGAN and rsGAN. (a) Recovered T2-weighted images along with the fully-sampled reference 

image and the source-contrast image. (b) Recovered T1-weighted images along with the fully-sampled 

reference image and the source-contrast image. rsGAN yields visually superior images compared to 

sGAN and rGAN. Note that sGAN suffers from either loss of features in the target contrast (in a) or 

synthesis of artefactual features (in b). Meanwhile, rGAN suffers from excessive loss of high spatial 

frequency information. Sample regions that are more accurately recovered by rsGAN are marked with 

arrows. 

 

  



  

Figure 8. The proposed rsGAN method was demonstrated for synergistic reconstruction-synthesis of 

T1-, T2- and PD-weighted images from the BRATS dataset. The acquisition for the source contrast (T1-

weighted) was lightly undersampled by RT1=1x, 2x, 5x, and the acquisitions for the target contrasts (T2- 

and PD-weighted) were heavily undersampled by R=10x, 20x, 30x, 40x, 50x. (a) Average PSNR on T2-

weighted images across test subjects for sGAN, rGAN, and rsGAN. (b) Average PSNR on T1-weighted 

images for sGAN, rGAN, and rsGAN. As expected, rsGAN outperforms both sGAN and rGAN at all 

R. At the same time, performance of rsGAN is highly similar for distinct values of RT1. 

  



 

 

Figure 9. Multi-contrast images in the IXI dataset were recovered, where the source contrast (T1-

weighted) was lightly undersampled at RT1=2x, and the target contrasts (T2- and PD-weighted) were 

heavily undersampled at R=30x. Images were recovered using ZF, sGAN, rGAN and rsGAN. (a) 

Recovered T2-weighted images. (b) Recovered PD-weighted images. Samples regions where rsGAN 

yields sharper images and improved suppression of aliasing artifacts are marked with arrows. 

  



TABLES 

TABLE I – Quality of recovered images in the MIDAS dataset. PSNR and SSIM values across the test 

subjects are listed for sGAN, rGAN, and rsGAN. T1-weighted acquisitions were taken as the source 

contrast, and T2-weighted acquisitions were taken as the target contrast. The highest PSNR and SSIM 

values in each row are marked in bold font (p<0.01).  

 sGAN rGAN rsGAN 

PSNR SSIM PSNR SSIM PSNR SSIM 

R = 10x 23.06 ± 0.53 0.862 ± 0.016 st. us ± v. sw 0.928 ± 0.006 st. tv ± v. yz v. zy{ ± v. vvt 

R = 20x 23.06 ± 0.53 0.862 ± 0.016 25.67 ± 0.29 0.885 ± 0.007 su. zs ± v. yv v. z}s ± v. vvz 

R = 30x 23.06 ± 0.53 0.862 ± 0.016 23.75 ± 0.36 0.850 ± 0.009 s{. z~ ± v. ys v. zvs ± v. vvz 

R = 40x 23.06 ± 0.53 0.862 ± 0.016 22.70 ± 0.36 0.821 ± 0.010 s{. }{ ± v. y} v. ttu ± v. v}v 

R = 50x 23.06 ± 0.53 v. tus ± v. v}u 22.16 ± 0.38 0.807 ± 0.010 s~. wu ± v. ~w v. tw{ ± v. vsv 

 

  



TABLE II – Quality of recovered images in the MIDAS dataset. PSNR and SSIM values across the test 

subjects are listed for sGAN, rGAN, and rsGAN. T2-weighted acquisitions were taken as the source 

contrast, and T1-weighted acquisitions were taken as the target contrast. The highest PSNR and SSIM 

values in each row are marked in bold font (p<0.01). 

 sGAN rGAN rsGAN 

PSNR SSIM PSNR SSIM PSNR SSIM 

R = 10x 22.03 ± 0.93 0.795 ± 0.027 26.26 ± 0.49 0.866 ± 0.016 su. us ± v. ~w v. tt} ± v. v}u 

R = 20x 22.03 ± 0.93 0.795 ± 0.027 24.62 ± 0.45 v. ts{ ± v. v}w s{. }{ ± v. {w v. tyt ± v. vss 

R = 30x 22.03 ± 0.93 0.795 ± 0.027 23.48 ± 0.45 0.791 ± 0.019 s~. ws ± v. ~t v. t~t ± v. v}z 

R = 40x 22.03 ± 0.93 0.795 ± 0.027 22.71 ± 0.42 0.763 ± 0.018 s~. ~{ ± v. ~t v. t~} ± v. v}t 

R = 50x 22.03 ± 0.93 0.795 ± 0.027 22.36 ± 0.44 0.751 ± 0.019 sy. zz ± v. {y v. tsz ± v. v}w 

 

  



TABLE III – Quality of recovered images in the BRATS dataset. PSNR and SSIM values across the 

test subjects are listed for sGAN, rGAN, and rsGAN. T1-weighted acquisitions were taken as the source 

contrast, and T2-weighted acquisitions were taken as the target contrast. The highest PSNR and SSIM 

values in each row are marked in bold font (p<0.01). 

 sGAN rGAN rsGAN 

PSNR SSIM PSNR SSIM PSNR SSIM 

R = 10x 20.91 ± 1.09 0.832 ± 0.036 sz. t~ ± }. }{ v. z}t ± v. v}s sz. zt ± }. su v. z}z ± v. v}w 

R = 20x 20.91 ± 1.09 0.832 ± 0.036 sw. ss ± v. zu v. tuw ± v. v}u sw. ws ± }. vy v. twz ± v. vs{ 

R = 30x 20.91 ± 1.09 0.832 ± 0.036 25.57 ± 0.90 0.835 ± 0.017 su. {v ± }. vu v. tuu ± v. vsz 

R = 40x 20.91 ± 1.09 v. tys ± v. vyu 23.39 ± 0.99 0.761 ± 0.025 s{. u} ± }. vy v. tyz ± v. vy{ 

R = 50x 20.91 ± 1.09 v. tys ± v. vyu 23.65 ± 0.73 0.751 ± 0.023 s{. ~{ ± }. vy v. ts{ ± v. vyt 

  



TABLE IV – Quality of recovered images in the BRATS dataset. PSNR and SSIM values across the 

test subjects are listed for sGAN, rGAN, and rsGAN. T2-weighted acquisitions were taken as the source 

contrast, and T1-weighted acquisitions were taken as the target contrast. The highest PSNR and SSIM 

values in each row are marked in bold font (p<0.01). 

 sGAN rGAN rsGAN 

PSNR SSIM PSNR SSIM PSNR SSIM 

R = 10x 20.90 ± 1.84 0.869 ± 0.031 28.36 ± 1.44 v. zss ± v. vvt sz. }} ± }. ~t v. zyv ± v. v}y 

R = 20x 20.90 ± 1.84 0.869 ± 0.031 su. {y ± v. zz 0.884 ± 0.007 sw. {} ± }. ~s v. zv{ ± v. vsv 

R = 30x 20.90 ± 1.84 0.869 ± 0.031 24.27 ± 1.14 0.846 ± 0.011 su. wt ± }. sv v. tzz ± v. vs~ 

R = 40x 20.90 ± 1.84 v. tuz ± v. vy} 23.13 ± 1.08 0.792 ± 0.017 s{. ~} ± }. yz v. tuz ± v. vy~ 

R = 50x 20.90 ± 1.84 v. tuz ± v. vy} 22.45 ± 1.23 0.775 ± 0.019 s~. ts ± }. yz v. t{{ ± v. vyt 

  



TABLE V – Quality of recovered images in the IXI dataset. T1-weighted acquisitions accelerated to 

various degrees (RT1) were taken as the source contrast, and T2- and PD-weighted acquisitions were 

taken as the target contrasts. PSNR and SSIM values for T2-weighted images across the test subjects are 

listed for sGAN, rGAN, and rsGAN. The highest PSNR and SSIM values in each row are marked in 

bold font (p<0.01). 

 

 

sGAN (RT1=1) rGAN rsGAN (RT1=1) rsGAN (RT1=2) rsGAN (RT1=5) 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

R = 10x 
25.73± 1.04 

0.905± 0.017 

29.96± 0.71 

0.881± 0.009 

y}. s}± v. t{ 

v. z}{± v. vvw 

31.09± 0.87 

0.912± 0.008 

30.58± 0.87 

0.901± 0.008 

R = 20x 
25.73± 1.04 

v. zv{± v. v}w 

26.76± 0.80 

0.818± 0.015 

sz. s{± v. tt 

v. tzu± v. v}} 

29.07± 0.86 

0.892± 0.010 

28.45± 0.85 

0.878± 0.012 

R = 30x 
25.73± 1.04 

v. zv{± v. v}w 

25.11± 0.87 

0.798± 0.022 

st. sw± v. t{ 

v. zv}± v. v}} 

28.08± 0.82 

0.896± 0.010 

27.44± 0.81 

0.881± 0.012 

R = 40x 
25.73± 1.04 

v. zv{± v. v}w 

23.72± 0.81 

0.741± 0.026 

sw. y{± v. z} 

0.882± 0.016 

27.07± 0.88 

0.874± 0.015 

26.44± 0.85 

0.858± 0.017 

R = 50x 
25.73± 1.04 

v. zv{± v. v}w 

23.32± 0.86 

0.716± 0.028 

sw. v}± v. zw 

0.867± 0.018 

26.73± 0.92 

0.860± 0.017 

26.11± 0.83 

0.843± 0.017 

 

  



TABLE VI – Quality of recovered images in the IXI dataset. T1-weighted acquisitions accelerated to 

various degrees (RT1) were taken as the source contrast, and T2- and PD-weighted acquisitions were 

taken as the target contrasts. PSNR and SSIM values for PD-weighted images across the test subjects 

are listed for sGAN, rGAN and rsGAN. The highest PSNR and SSIM values in each row are marked in 

bold font (p<0.01). 

 

 

sGAN (RT1=1) rGAN rsGAN (RT1=1) rsGAN (RT1=2) rsGAN (RT1=5) 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

R = 10x 
25.10± 1.17 

v. z}t± v. v}{ 

28.48± 1.37 

0.877± 0.014 

sz. ts± }. }} 

v. z}w± v. vvt 

29.69± 1.16 

0.915± 0.008 

29.41± 1.15 

0.907± 0.009 

R = 20x 
25.10± 1.17 

v. z}t± v. v}{ 

26.00± 1.35 

0.805± 0.023 

sw. z~± }. }} 

0.899± 0.010 

27.76± 1.18 

0.894± 0.010 

27.50± 1.14 

0.884± 0.012 

R = 30x 
25.10± 1.17 

v. z}t± v. v}{ 

24.61± 1.27 

0.789± 0.028 

sw. vv± }. }} 

0.900± 0.011 

26.85± 1.09 

0.895± 0.011 

26.56± 01.05 

0.885± 0.013 

R = 40x 
25.10± 1.17 

v. z}t± v. v}{ 

23.50± 1.18 

0.737± 0.036 

su. s}± }. vt 

0.883± 0.015 

26.05± 1.05 

0.876± 0.014 

25.75± 1.02 

0.865± 0.017 

R = 50x 
s{. }v± }. }w 

v. z}t± v. v}{ 

23.00± 1.12 

0.707± 0.033 

s{. wv± v. zz 

0.867± 0.017 

s{. {s± }. vv 

0.859± 0.018 

s{. }t± v. zw 

0.846± 0.019 

 

 

 


