K-SPACE AND IMAGE RECONSTRUCTION

Mo Shahdloo

Wellcome Centre for Integrative Neuroimaging, FMRIB University of Oxford

ISMRM British & Irish CHAPTER

- overview of MR signal sampling and k-space
- fundamentals of image reconstruction
- non-cartesian acquisitions
- accelerated MRI
 - partial Fourier
 - parallel imaging
 - SENSE
 - GRAPPA

OUTLINE

location

BIC-ISMRM MR-FEST 2021

SPATIAL ENCODING

location

SPATIAL ENCODING

-FOV/2

 $-G_{x}FOV/2$

SPATIAL ENCODING

-FOV/2

SPATIAL ENCODING

 $s(t) = \int f(x)e^{-i\Phi(x,t)}dx$

$G_{x}FOV/2$

 $s(t) = \int f(x)e^{-i\Phi(x,t)}dx$ $\Phi(x,t) = \gamma G_x t x = 2\pi \left(\frac{\gamma}{2\pi} G_x t\right) x$

 $k_{x}(t)$

 $G_x FOV/2$

$$s(t) = \int f(x)e^{-i\Phi(x,t)}dx$$
$$\Phi(x,t) = \gamma G_x tx = 2\pi \left(\frac{\gamma}{2\pi}G_x t\right)$$
$$\underbrace{f(x)e^{-i2\pi k_x(t)x}dx}^{k_x(t)}$$

$$s(t) = \int f(x)e^{-i\Phi(x,t)}dx$$

$$\Phi(x,t) = \gamma G_x tx = 2\pi \left(\frac{\gamma}{2\pi}G_x t\right)$$

$$\underbrace{f(x)e^{-i2\pi k_x(t)x}}_{k_x(t)} dx = \mathcal{F}\left\{f(x)e^{-i2\pi k_x(t)x}dx\right\}$$

BIC-ISMRM MR-FEST 2021

5

SIGNAL SAMPLING

 $s(t) = \int f(x)e^{-i2\pi k_x(t)x}dx$

SIGNAL SAMPLING

 $s(t) = \int f(x)e^{-i2\pi k_x(t)x} dx$

 $s(t_q) = \int f(x)e^{-i2\pi k_x(t_q)x} dx$, $t_q = q\Delta t$

SIGNAL SAMPLING

 $s(t) = \int f(x)e^{-i2\pi k_x(t)x}dx$

 $s(t_q) = \int f(x)e^{-i2\pi k_x(t_q)x} dx$, $t_q = q\Delta t$

 $S(q) = \sum_{n=1}^{N} f(x_n) e^{-i2\pi k_x(q)x_n}$ n=1 $, x_n = n\Delta x$

BIC-ISMRM MR-FEST 2021

 $\triangleright \chi$

$\hat{\mathbf{f}} = \underset{\mathbf{f}}{\operatorname{arg\,min}} ||\mathbf{y} - \mathbf{A}\mathbf{f}||^2$

BIC-ISMRM MR-FEST 2021

ENCODING MODEL

N $y(q) = s(q) + \epsilon_q = \sum e^{-i2\pi k_x(q)n} f(n) + \epsilon_q$ n=1

- $\mathbf{y} = \mathbf{A}\mathbf{f} + \epsilon$

ENCODING MODEL

 $y(q) = s(q) + \epsilon_q = \sum_{n=1}^{N} e^{-i2\pi k_x(q)n} f(n) + \epsilon_q$ n=1

 $\mathbf{y} = \mathbf{A}\mathbf{f} + \epsilon$

 $\psi = e^{-i2\pi nq}$

ENCODING MODEL

$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} ||\mathbf{y} - \mathbf{A}\mathbf{f}||^2 + \lambda \mathbf{R}(\mathbf{y})$

- non-cartesian sampling
- field inhomogeneity
- signal decay

•

coil sensitivities

 \mathcal{N} $y(q) = s(q) + \epsilon_q = \sum e^{-i2\pi k_x(q)n} f(n) + \epsilon_q$ n=1

- $\mathbf{y} = \mathbf{A}\mathbf{f} + \epsilon$

NON-CARTESIAN SAMPLING

* G. Wang et al, ISMRM 2021

Non-Unifrom FFT (gridding + FFT)

GRIDDING

GRIDDING

GRIDDING

sampling density

GRIDDING

GRIDDING

GRIDDING

practical considerations:

- grid resolution
- kernel function and specs
- density estimation

ACCELERATED MRI

A

 $\hat{f} = A^{-1}y$

ACCELERATED MRI

ACCELERATED MRI: PARTIAL FOURIER

error

BIC-ISMRM MR-FEST 2021

11

initial guess

initial guess

initial guess

PARALLEL IMAGING

PHASED-ARRAY COILS

DATA REDUNDANCY

DATA REDUNDANCY

BIC-ISMRM MR-FEST 2021

ſ

DATA REDUNDANCY

X

coil 1

Pruessmann et al., 1999

Pruessmann et al., 1999

$I_1(y) = f(y)C_1(y) + f(y + \Delta y)C_1(y + \Delta y)$ $I_2(y) = f(y)C_2(y) + f(y + \Delta y)C_2(y + \Delta y)$ $\Delta y = \frac{FOV}{R}$

Pruessmann et al., 1999

$I_{1}(y) = f(y)C_{1}(y) + f(y + \Delta y)C_{1}(y + \Delta y)$ $I_{2}(y) = f(y)C_{2}(y) + f(y + \Delta y)C_{2}(y + \Delta y)$ FOV $\Delta y =$ R

Pruessmann et al., 1999

- prescan data \bullet
- fully-sampled calibration data
- low-rank methods (ESPIRIT,...) ullet

GENERALIZED AUTOCALIBRATING PARTIALLY PARALLEL ACQ.

Deshmane et al., 2012

GENERALIZED AUTOCALIBRATING PARTIALLY PARALLEL ACQ.

1) estimate interpolating kernels using autocalibrating data

2) interpolate missing data

3) reconstruct and combine

GENERALIZED AUTOCALIBRATING PARTIALLY PARALLEL ACQ.

1) estimate interpolating kernels using autocalibrating data

2) interpolate missing data

kernel dimensions

OF

- calibration fidelity

BIC-ISMRM MR-FEST 2021

3) reconstruct and combine

interpolation specifics

SUMMARY

- What is k-space? How is it related to the object magnetisation?
- Reconstruction is the solution to the encoding model
- How to deal with non-cartesian sampling
- Accelerated MRI
 - Partial Fourier
 - Parallel imaging

pject magnetisation?

