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C O G N I T I V E  N E U R O S C I E N C E

Dorsal raphe nucleus controls motivation-state 
transitions in monkeys
Luke Priestley1*, Mark Chiew2†‡, Mo Shahdloo1, Ali Mahmoodi1, Xinghao Cheng3,  
Robin Cleveland3, Matthew Rushworth1§, Nima Khalighinejad1§

The dorsal raphe nucleus (DRN) is an important source of serotonin in the brain, but fundamental aspects of its 
function remain elusive. Here, we present a combination of minimally invasive recording and disruption studies to 
show that DRN brings about changes in motivation states. We use recently developed methods for identifying 
temporal patterns in behavior to show that monkeys change their motivation depending on the availability of 
rewards in the environment. Distinctive patterns of DRN activity occur when monkeys transition between a high-
motivation state occupied when rewards are abundant, to a low-motivation state engendered by reward scarcity. 
Disrupting DRN diminishes sensitivity to the reward environment and perturbs transitions in motivational states.

INTRODUCTION
Animals need rewards for their survival, and they need to obtain 
them as efficiently as possible. In many naturalistic scenarios, this 
means tracking general features of the surrounding environment: 
The foraging behavior of many species, for example, involves com-
paring the opportunity an animal is currently confronted with 
against the general richness and stochasticity of opportunities it has 
encountered in the recent past, which guide its expectations for the 
future (1, 2). These are rational considerations for animals given the 
biological constraints that encumber them. Finding and pursuing 
rewards consumes precious metabolic resources that must later be 
replenished, and so it is critical that animals organize their reward-
seeking activities in ways that exploit their external milieu—to press 
their advantage when things are good and conserve their energy 
when things are bad.

How does the brain reconcile motivation for rewards with the 
environment in this way? Here, we argue for a critical role for the dorsal 
raphe nucleus (DRN)—a phylogenetically ancient part of the brain-
stem that is distinguished by its serotonergic innervation of the 
mammalian forebrain. Although fundamental aspects of DRN’s 
function remain elusive, two major themes are discernible: (i) that 
DRN controls changes in an animal’s behavior and (ii) that DRN 
responds to reward-related features of an animal’s milieu, like the 
value, valence, and uncertainty of recent outcomes (3–10).

We build on this previous work in arguing that DRN controls 
transitions between motivational states that reconcile an animal’s 
behavior with the distribution of rewards in the environment. We 
use a novel behavioral paradigm to demonstrate that rhesus monkeys are 
more motivated to pursue rewards that occur in rich environments with 
many high-value opportunities. We implement recent innovations 
in quantitative behavioral modeling to show that this pattern is explicable 

by state-like changes in an animal’s motivation that match the cur-
rent environment’s reward distribution. We take advantage of the 
whole-brain perspective afforded by functional magnetic resonance 
imaging (fMRI) to show that brain activity in DRN—but no other neu-
romodulatory nucleus—covaries with transitions in motivation-states, 
specifically when monkeys transition between a high-motivation 
state occupied when rewards are abundant, to a low-motivation 
state engendered by reward scarcity. Such comparisons are critical 
for identifying the different functions of different neuromodulatory 
nuclei (11). Interpreting the causal significance of fMRI activation 
patterns is possible when the impact of disrupting the activity can be 
examined (12–14). Accordingly, we modulate neural activity with 
minimally invasive transcranial ultrasound stimulation (TUS) to 
show that DRN, but not a functionally related neuromodulatory 
nucleus—ventral tegmental area (VTA)—is causally involved in 
motivational-state transitions (15–17). In doing so, we provide the 
first demonstration that minimally invasive modulation of DRN is 
possible and a new perspective on DRN’s behavioral function.

RESULTS
Animal behavior is modulated by the environment
Four rhesus monkeys (Macaca mulatta) performed a simple decision- 
making task involving sequential encounters with reward opportu-
nities that varied in reward magnitude and reward probability 
(Fig. 1A). Upon each encounter, the animals could either pursue the 
opportunity and incur a short temporal cost or let the opportunity 
pass and proceed to the next encounter. Each session comprised 
four blocks of 40 to 50 trials. The mean reaction time (RT) after the 
go cue was 0.76 s (SD = 0.07 s). The mean premature response rate 
was 3% (SD = 1.8%) of trials per session. The animals performed 
one session per day at the same time of the day.

We systematically controlled the reward probability values for re-
ward opportunities within each block to engender different reward 
environments. In other words, the distribution of a given reward-
probability value varied between blocks. Blocks varied on two di-
mensions: (i) richness, defined by the mean reward probability of 
opportunities—i.e., the value of an average opportunity in a block, 
and (ii) stochasticity, defined as trial-to-trial variability in reward 
probability, and implemented by changing the width of reward-
probability distributions (Fig. 1, B and C; see Materials and Methods 
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for details). We refer to the reward probability associated with a spe-
cific reward opportunity as reward probability. We refer to blocks in 
which reward probabilities were higher, on average, as rich blocks, 
and to blocks in which they were lower on average as poor blocks. 
Similarly, we refer to blocks in which there was high variance in 
reward-probability values as stochastic blocks, and to blocks in 
which there was low variance as predictable blocks.

We first confirmed that animals were more likely to pursue re-
ward opportunities as a function of increases in an opportunity’s 
reward probability (fig. S1, A-i) and reward magnitude (fig. S1, A-ii). 
Then, we examined how animals changed their behavior in response 
to the environment. We reasoned that an animal’s understanding of 
the environment would depend on its reward history. To determine 

the time horizon of sensitivity to past rewards, we used a mixed-
effects logistic regression with individual terms for reward outcomes 
on trials t – 1 to t – 10 (where t is the current trial; GLM1.1, see 
Materials and Methods). This suggested that behavior was modu-
lated by rewards as distant as five trials into the past, but no further 
(Fig. 1D). We therefore operationalized the richness of the environ-
ment as the average reward accumulated in the previous five trials 
and the stochasticity of the environment as the SD of the reward rate 
over the same five trial period. Changing the time window used to 
operationalize environments, or operationalizing the environment 
using the blocks specified in the experimental design rather than 
reward history, did not affect the inferences drawn from any follow-
ing analyses (see figs. S1, B and C, and S2).
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Fig. 1. Animals are more likely to pursue reward opportunities in rich environments. (A) The behavioral task involved sequential encounters with reward opportuni-
ties that varied in reward magnitude (stimulus color) and reward probability (dots per stimulus). Animals performed the task while undergoing functional MRI and pupil-
lometry. (B) The probability density of reward probability in different reward environments. Rich blocks [purple; mean(reward probability) = 0.80] had higher mean reward 
probability than poor blocks [blue; mean(reward probability) = 0.55]. Stochastic blocks [light colors; SD(reward probability) = 0.13] were uniformly distributed, and pre-
dictable blocks were normally distributed [dark colors; SD(reward-probability) = 0.05]. Block-type was cued with a visual stimulus bordering the screen (see Materials and 
Methods). (C) A depiction of changes in reward probability as a function of reward environment in an example session. Each session comprised four environments cover-
ing each permutation of richness and stochasticity. (D) Effect size of reward outcomes (RO) on past trials on pursue-versus-reject decision on the current trial. For com-
parison, the effect size of the expected value (EV) of the current trial is shown with a red point. Points and whiskers indicate effect size (i.e., regression weight) ± 95% 
confidence interval (CI) for each predictor. Effects for outcomes past t – 5 are nonsignificant at 0.05 level. (E) Animals were more likely to pursue opportunities as the 
richness of the environment increased. x axis indicates expected value of the reward opportunity on each trial. y axis indicates rate of reward pursuit. Color scale indicates 
mean-split according to richness of the environment, i.e., high is trials where richnesst > μrichness and low is richnesst ≤ μrichness. Dots and whiskers indicate means (±SEM) 
of the pursue rate in deciles expected value over each animal in each session. (F) Animals were more likely to pursue opportunities as the stochasticity of the environment 
increased. x axis, y axis, dots, whiskers, and color scale follow conventions of (E). (G) Animals were likely to repeat pursue-versus-reject decisions over consecutive trials. 
Dots indicate mean level of responding per animal per session. a.u., arbitrary units.
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We quantified the influence that the richness and stochasticity of 
the environment had on behavior with a series of mixed-effect bino-
mial general linear models (GLM) that accounted for animal-
specific variation in behavior. This revealed that animals were more 
likely to pursue opportunities as a function of increases in the rich-
ness and stochasticity of the environment (GLM1.2, see Materials 
and Methods; βenvironment-richness = 0.46, SE = 0.08, P < 0.001; Fig. 1E; 
see also fig.  S1, B to D; βenvironment-stochasticity  =  0.08, SE  =  0.03, 
P = 0.020; Fig. 1F; see also fig. S1E). These effects were independent 
of trial-by-trial reward value—For example, opportunities with the 
same expectation value were more likely to be pursued in rich rela-
tive to poor environments, meaning that the effect was not due to 
the correlation between rich environments and high-value reward 
opportunities on a given trial (Fig. 1, E and F; see also fig. S1, B, 
D, and E).

The fact that the richness of the environment predicted whether 
animals would pursue reward opportunities indicated a subtle but 
important feature of behavior. Animals could only obtain rewards 
by pursuing reward opportunities, meaning that rich environments 
effectively corresponded to periods where many rewards had been 
pursued in the recent past. Insofar as receiving rewards in the past 
encouraged animals to pursue opportunities in the present, the richness 
of the environment effect therefore indicated that pursue-versus-
reject decisions were autocorrelated over consecutive trials. We tested 
this hypothesis by predicting the pursue-versus-reject decision taken 
on each trial using the corresponding decision on the previous trial 
(behavioral history, hence). This confirmed that animals tended to repeat 

pursue-versus-reject decisions over consecutive trials, although each 
trial featured a separate reward opportunity with distinct magnitude 
and probability parameters (GLM1.3; βbehavioral-history = 0.64, SE = 
0.24, P < 0.001; Fig. 1G).

A hidden Markov model identifies motivation states 
in behavior
We reasoned that autocorrelations in animal behavior might reflect 
changes in motivation states—that is, changes in an animal’s intrin-
sic propensity to pursue rewards that are independent of the value of 
the opportunity currently at stake and that might persist over 
many trials (Fig. 2, A and B). It has recently been shown that la-
tent time-varying dispositions in behavior can be uncovered us-
ing a general linear model hidden Markov model (GLM-HMM) 
approach (18, 19). We therefore tested the motivation-state hypoth-
esis using a GLM-HMM.

GLM-HMMs are an extension of the classical GLM in which the 
parameter values of a GLM are allowed to change over time-varying 
latent states. Transitions between latent states are governed by 
Markovian dynamics and are thus called “HMM states.” In simple 
terms, this means that if animals behave in fundamentally different 
ways—for example, if they adopt different motivation states—over 
the course of the task, the GLM-HMM can detect these states and 
specify how the relationship between the task and behavior changes 
in each state via the weights in the GLM part of the model. We 
formulated a GLM-HMM where the pursue-reject decision on each 
trial was predicted with a binomial GLM that included the following 

Fig. 2. A general linear model–hidden Markov model for animal behavior. (A) Pursue-versus-reject decisions (stars at the top indicate reward pursuits; dots at the 
bottom indicate reward rejections) as a function of expectation value (y axis) over time (x axis) in an example session. The animals showed prolonged biases to pursue 
(red) or reject (pink) opportunities over many consecutive trials. (B) We captured these patterns using a GLM-HMM that featured state-dependent bias parameters. These 
bias parameters produced state-dependent decision functions that reflected changes in the way animals made pursue-versus-reject decisions over time. (C) A two-state 
GLM–HMM improved fit relative to other models according to AIC—a penalized form of log-likelihood (see fig. S3 for full cross-validation results). Points show mean 
session-wise AIC for each animal. (D) The posterior probabilities of state-specific bias parameter values in each animal (M1–M4) suggested that HMM-states were associ-
ated with meaningful changes in an animal’s bias to pursue-versus-reject rewards. (E) Transition matrices indicated that in each animal, HMM-states were strongly auto-
correlated over consecutive trials (M1–M4).
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terms: (i) a bias or “intercept” term, (ii) a predictor for the expecta-
tion value of the reward opportunity available on each trial, and (iii) 
predictors for external environment cues that were presented 
throughout the task (Fig. 2B and fig. S3; see Materials and Methods 
for details). Our hypothesis was that animals’ experienced changes 
in their intrinsic predisposition to pursue-versus-reject reward op-
portunities, over and above any influence of extrinsic factors such as 
the expectation value of the current opportunity. We therefore let 
only the bias parameter change between HMM states and held the 
weights on other predictors constant (but see figs. S5 and S6 for al-
ternative models in which additional parameters changed between 
HMM states). Incorporating predictors for task features in the GLM 
part of the model ensured that the behavioral changes identified by 
the GLM-HMM are specifically due to shifts in the animal’s intrinsic 
propensity to pursue rewards, after taking into account external fac-
tors like the reward value on the current trial.

We used a previously reported model-selection procedure, which 
involved testing models with different numbers of HMM states us-
ing fivefold cross-validation (see fig.  S3 for details) (18). We vali-
dated the procedure using a series of parameter recovery tests (see 
fig. S8). After confirming successful parameter recovery, we imple-
mented it on behavioral data. This indicated that cross-validated 
log-likelihoods for two-state GLM-HMMs were higher than one-
state GLM-HMMs for all animals (Fig. 2C; see fig. S3 for full cross-
validation results) but that invoking additional states beyond this 
number was not warranted for any animal. We therefore used two-
state GLM-HMMs for all further analyses.

Each animal-specific two-state GLM-HMM featured clearly dis-
tinct state-specific bias parameters (Fig. 2D) and profoundly auto-
correlated HMM-state transition matrices, which were consistent 
with state-like fluctuations in motivation to pursue rewards (Fig. 2E). 
To further examine the validity of the model, we simulated data from 
a fitted two-state GLM-HMM and compared the output with: (i) the 
observed behavioral data recorded from animals and (ii) data simu-
lated from a conventional binomial GLM with no HMM states. The 
two-state GLM-HMM data reproduced key features of animal be-
havior including trial-to-trial autocorrelation in pursue-versus-
reject decisions, (Fig. 3, A and B) and the richness of the environment 
and behavioral history effects described earlier (Fig. 3, C and D). The 
binomial GLM with no HMM states was unable to reproduce this 

pattern. This demonstrates that the key behavioral effects described 
above—the tendency of animals to pursue more rewards in rich en-
vironments and to repeat their pursue-versus-reject decisions over 
time—can be explained parsimoniously by a two-state GLM-HMM 
in which there are time-varying changes in the bias term, which de-
termines an animal’s predisposition to pursue or reject opportuni-
ties. Further analyses demonstrated that HMM states were not reducible 
to satiety, fatigue, or time on task (fig. S4).

We tested the whether the statistical patterns identified by the 
GLM-HMM corresponded to biological motivation states with a se-
ries of follow-up analyses. To do this, we first decoded the maxi-
mum a posteriori HMM state on each trial using a well-established 
procedure called the Viterbi algorithm. We validated the Viterbi al-
gorithm on simulated data, which demonstrated that it identified 
the correct HMM state on 90% of trials and identified HMM-state 
transitions within ± three trials of a true transition in 85% of cases 
(Fig. 4, A to C). We then examined how decoded HMM states were 
related to behavior. As expected, the animals were markedly more 
likely to pursue reward opportunities in the putative high-motivation 
state compared to the low-motivation state, over and above any in-
fluence of the reward value available (GLM2.1; βmotivation-level = 2.66, 
SE = 0.56, P < 0.001; Fig. 4D). Behavior during transitions between 
HMM states was characterized by abrupt changes in pursue rates, 
suggesting that the GLM-HMM captured state-like differences in 
behavior with a high degree of temporal precision (GLM2.2; βbefore-

versus-after-transition(high-to-low)  =  −1.48, SE  =  0.08, P  <  0.001; βbefore-

versus-after-transition(low-to-high)  =  1.80, SE  =  0.30, P  <  0.001;  Fig.  4G). 
Last, we established the model’s convergent validity by comparing 
HMM states to: (i) trial-by-trial pupil size, a well-validated indicator 
of physiological arousal (20), and (ii) trial-by-trial RTs for pursue 
decisions, a simple way of quantifying vigor. Consistent with the 
link between HMM states and motivation, putative high-motivation 
states featured faster RTs for pursue decisions (GLM2.3; βmotivation-

level = −0.20, SE = 0.03, P < 0.001; Fig. 4E) and increases in pupil 
diameter during decision-making (GLM2.4; βmotivation-level  =  0.20, 
SE  =  0.02, P  <  0.001;  Fig.  4F). The GLM-HMM, thus, provided 
quantitative evidence for discrete, persistent, and biologically mean-
ingful internal motivation-states in monkey behavior.

Last, we tested the hypothesis that motivation states were related 
to the external environment: Was it the case, for example, that animals 
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Fig. 3. A two-state GLM-HMM recapitulates qualitative patterns of animal behavior. (A) Data simulated from a two-state GLM-HMM reproduced the autocorrelations 
in decision-making that characterized animal behavior. A binomial GLM did not reproduce this pattern. y axis shows autocorrelation function (ACF) between the decision 
on trial t and decisions on (t – 1):(t – 10) for recorded behavior, the two-state GLM-HMM and a binomial GLM for an example animal. Lines and shaded areas show the 
means and SEM, respectively, of the ACF at each individual lag. (B) A complementary perspective on autocorrelated decisions is decision run lengths—the number of 
times that a decision is repeated over consecutive trials [e.g., rejecting three consecutive opportunities is a run length of 3; see also (18)]. The GLM-HMM recapitulates 
observed patterns of run lengths, especially for run lengths spanning five or more consecutive trials. A binomial GLM is unable to reproduce this pattern. Data from the 
same example animal and simulations as previous panels. (C and D) Implementing the GLMs (GLM1.1 to 1.3) used to analyze behavior on simulated data from a two-state 
GLM-HMM recapitulated both richness of the environment (C) and behavioral history effects (D). The same effects did not occur in data simulated from one-binomial 
GLMs. See Fig. 1G and fig. S1D for comparison. In (C), dots indicate mean pursue rate in deciles of richness of the environment across simulations, and shaded area indi-
cates SEM around line of best fit. In (D), dots indicate mean pursue rates in individual simulations.
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matched their motivation state with the overarching distribution of 
rewards in the task milieu? We quantified the availability of rewards 
by calculating, for each trial, the average expectation value of reward 
opportunities in the preceding five trials. We did not use the rich-
ness of the environment metric introduced earlier because this was 
calculated on the basis of an animal’s reward history and was there-
fore contingent on its recent behavior—Relating an animal’s motiva-
tion state to its recent behavior, thus, would be a logically circular 
analysis. In contrast, the expectation value of reward opportunities 
was experimentally controlled via the reward distributions charac-
terizing the task (Fig. 1B) and was therefore not affected by an ani-
mal’s decisions. This showed that animals were more likely to occupy 
high-motivation states as the expected value of recent opportunities 
increased (GLM2.5; βAve.EV = 0.19, SE = 0.08, P = 0.022; Fig. 4H; see 
also fig. S7). The GLM-HMM therefore demonstrated not just that 
animals experienced state-like changes in motivation for rewards 
but that these states were reconciled with the distribution of rewards 
in the world around them.

Brain activity in DRN reflects an animal’s reward 
environment and changes in its motivation state
Animals performed the task under fMRI. Our analysis of fMRI record-
ings focused on a priori regions of interest (ROIs; see figs. S9 and S10) 
comprising the ascending neuromodulatory systems (ANS)—an 

assemblage of phylogenetically ancient nuclei that includes the sero-
tonergic DRN, in addition to the VTA and substantia nigra (SN), 
the cholinergic nucleus basalis (NB), and the noradrenergic locus 
coeruleus (LC). We also examined habenula (Hb)—an epithalamic 
nucleus with diverse subcortical connections that interact with the 
ANS in a reciprocal fashion (21, 22). Broadening our analysis be-
yond DRN provided a comparative perspective on its function, 
which is valuable given that reward functions are sometimes jointly 
attributed to different subcortical nuclei—The richness of the envi-
ronment, for example, has been linked to both VTA and DRN-related 
signals (9, 10, 23, 24), while various forms of reward uncertainty have 
been ascribed to DRN, LC, and the cholinergic basal forebrain alike 
(11, 25–28). fMRI’s wholistic perspective enabled us to address this 
by comparing signals in DRN and other ANS nuclei (12). This was 
accomplished with a novel suite of fMRI acquisition and preprocess-
ing methods that optimized blood oxygen level–dependent (BOLD) 
signal from subcortical regions and minimized artefacts and noise 
sources for midbrain and brainstem regions (see the section “Acqui-
sition, reconstruction, and preprocessing of MRI data” in Materials 
and Methods).

We first examined brain activity during the pursue-versus-reject 
decision made on each trial (GLM3.2; Materials and Methods). We 
focused on activity representing the richness and stochasticity of 
the reward environment at this time. Note that the richness of the 
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Fig. 4. HMM states correspond to distinct, persistent, and biologically meaningful motivation states during behavior. We decoded the maximum a posteriori HMM 
state on each trial using the Viterbi algorithm and compared it to behavior. (A) We established Viterbi algorithm’s accuracy using simulated datasets where the true HMM 
state was known. Decoding was successful on 90.68% (±0.72%) of trials. Histogram shows distribution of session-level decoding accuracy (%) across simulated datasets. 
(B) Comparison of true and Viterbi-decoded states in example simulated session. (C) We assessed the accuracy of state-transition decoding by quantifying the distance 
between decoded and true transition trials. Most transition trials were exactly identified (mean distance = −0.03) and 84% of decoded transitions occurred within ±3 
trial window of a true transition. Histogram shows proportion of decoded-versus-true transition distances. (D) Animals were more likely to pursue reward opportunities 
in the high-motivation state compared to the low-motivation state, over and above any influence of an opportunity’s expected value. Dots and whiskers indicate 
means ± SEM pursue rates in deciles of expected value. (E) RTs were faster when animals occupied the high-motivation state. Dots indicate mean RT for each animal in 
each session. (F) Pupil size during the decision phase (see Materials and Methods) of the task was greater when animals occupied the high-motivation state relative to the 
low-motivation state. Dots indicate mean pupil size in each animal in each session. (G) Pursue rates changed abruptly at motivation-state transitions. This suggests that 
the GLM-HMM identified state-like rather than gradual changes in behavior. Color shades indicate transition direction. Lines and shaded areas indicate means (±SEM) of 
pursue rate across all animals in all sessions (H) Animals are more likely to occupy the high-motivation state increases as the expectation value of recent reward opportu-
nities (Ave. EV) increases. Dots and whiskers indicate means (±SEM) of rate of motivation-state occupancy in deciles average expectation value.
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environment was correlated with an animal’s behavioral history (see 
the section “Animal behavior is modulated by the environment”). 
We therefore performed our analysis separately for trials in which 
the previous encounter was (i) pursued and (ii) rejected to ensure 
that any patterns of brain activity that we identified were specific to 
the richness of the environment, and not related to behavioral his-
tory. We note, however, that the key aspects of DRN’s relationship 
with the richness of the environment obtain regardless of whether 
the data are analyzed separately in this way (Fig. 5A).

DRN activity was negatively correlated with the richness of the 
environment after rejection of opportunities [one-sample two-tailed 
t test; GLM3.2; tDRN;rejected(58) = −2.80, P = 0.034; tDRN;pursued(58) = 
−0.37, P = 0.713 after Bonferroni correction for multiple compari-
sons, as are all subsequent t tests;  Fig.  5A, see legend for further 
discussion of timing of BOLD signal]. In contrast, VTA activity was 
prominent following opportunity pursuits [GLM3.2; tVTA;pursued(58) = 
3.30, P = 0.009; tVTA;rejected(58) = 1.60, P = 0.350; Fig. 5A], and Hb 
exhibited aspects of both DRN and VTA patterns [GLM3.2; 
tHb;pursued(58) = 3.32, P = 0.009; tHb;rejected(58) = −3.37, P = 0.008; 
tHb;rejected-versus-pursued(58) = 4.95, P  <  0.001;  Fig.  5A]. A two-way 
analysis of variance (ANOVA) followed by pairwise comparisons 
confirmed that the effects in DRN and VTA after rejections and pursuits, 

respectively, were different from one another but not from the cor-
responding Hb effect [FROI(2, 348) = 8.106, P < 0.001, FBehav.-history(1, 
348)  =  22.305, P  <  0.001; FROI-by-Behav.-history(2, 348)  =  4.521, 
P  =  0.012; tVTA versus DRN;pursued(58) = 2.501, P  =  0.015; tDRN versus 

VTA;rejected(58) = −3.403, P < 0.001; tVTA versus Hb;pursued(58) = 0.650, 
P = 0.518; tDRN versus Hb;rejected (58) = −0.214, P = 0.831]. We did not 
find an effect of environment richness as a function of behavioral 
history in any other ROI (all Ps > 0.05). Despite previous evidence 
linking DRN with reward uncertainty, we found no relationship be-
tween the environment’s stochasticity and brain activity in DRN 
[GLM3.1; tDRN(58) = 1.10, P = 0.824] and no evidence that stochas-
ticity was represented in other ROIs (GLM3.1; see fig. S11).

After determining that DRN, VTA, and Hb were the key regions 
tracking the environment, we tested whether they were linked to the 
motivation states identified with the GLM-HMM. We first quanti-
fied the relationship between brain activity and motivation-state 
level (high versus low). This showed that high motivation states 
were signaled by increased activity in VTA and Hb but not in DRN 
[GLM3.4; tHb;motivation state(58) = 2.34, P = 0.045; tVTA;motivation state(58) = 
2.82, P = 0.019; tDRN;motivation state(58) = 1.75, P = 0.084; Fig. 5B]. 
We next examined activity related to motivati	 on-state transitions 
(change versus no change) by identifying transition trials on which 

A

B

Fig. 5. Brain activity in DRN represents the richness of an animal’s environment and transitions between motivation-states. (A-i) Time course of the effect that the 
richness of the environment (β-richness) has on BOLD signal in subcortical ROIs. Time (x axis) depicted relative to the onset of reward opportunities when pursue-versus-
reject decisions are made (i.e., time = 0 corresponds to decision time). BOLD signal in macaque monkeys peaks approximately 2 to 4 s after neural activity. The timing of 
peak β weights in DRN, VTA, and Hb is therefore consistent with brain activity that occurs at the time of decision-making. We did not find an effect of environment richness 
as a function of behavioral history in any other ROI (all Ps > 0.05). The panel shows the analysis separately as a function of behavioral history (GLM3.2; see Results for ex-
planation). (A-ii) Distribution of peak effect sizes of richness of the environment (β-richness) on BOLD signal. Dots indicate peak effect sizes for individual sessions. Sepa-
rating the data in this way revealed notable patterns in the representation of the environment across regions. DRN represented the richness of the environment with 
negative sign after the previous opportunity was rejected, VTA represented the richness of the environment with positive sign when animals pursued the previous op-
portunity, and Hb exhibited distinct positive and negative signals on trials after pursuits and rejections, respectively. (B-i) Time course of the effect of motivation-state 
level (high- versus low-motivation state, purple) and motivation-state transitions (red) on BOLD activity in ROIs that represented the reward environment. (B-ii) Distribu-
tion of peak effect sizes for motivation-state level (purple) and motivation-state transitions (red) on brain activity. Only DRN represents transitions between motivation-
states. Dots indicate peak effect sizes for individual sessions. *P < 0.05, **P < 0.01, ***P < 0.001.
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the maximum a posteriori motivation state was different from the 
preceding trial. For each transition trial, we defined a corresponding 
transition period comprising a symmetric seven-trial window cen-
tered on the transition trial (i.e., the transition trial ± three trials). 
We did this for two reasons: (i) The biological process of transition-
ing between motivation states is likely to unfold over time instead of 
occurring instantaneously, meaning that brain activity related to such 
transitions will occur over a series of trials. (ii) Validation of the GLM-
HMM on simulated data showed that state transitions could be accu-
rately decoded within a ± three-trial window (see Fig. 4C). On average, 
these transition periods comprised 35% of the total trials in a given 
session. Brain activity in these periods showed a notable dissociation 
whereby DRN—but neither Hb nor VTA—signaled transitions be-
tween motivation states [GLM3.4; tDRN;state transition(58) = −3.211, 
P = 0.006; tHb;state transition(58) = −1.43, P = 0.160; tVTA;state transition(58) = 
−1.80, P = 0.152; Fig. 5B; see fig. S14 (B and C) for data from indi-
vidual animals].

The motivation-state transition effect was localized to DRN: An-
alyzing BOLD signal from adjacent anatomical features, such as the 
medial raphe nucleus (MRN) and fourth ventricle, showed that 
there were no corresponding patterns of activity in these areas, and 
the motivation-state effect in DRN was, indeed, greater than the null 
effects in MRN and the fourth ventricle [Fig. 6A; tDRN(58) = −3.21, 

P = 0.006, tMRN(58) = 1.01, P = 0.638, tVent(58) = −0.007, P = 0.994, 
tDRN-versus-MRN(58) = −3.13, P = 0.003; tDRN-versus-Vent(58) = −2.21; 
P  =  0.031]. We then probed the temporal specificity of the DRN 
activity pattern by varying the position of the transition periods ex-
amined in the fMRI analysis relative to the transition trials identi-
fied by the GLM-HMM. Activity changes in DRN were most prominent 
when the analyzed period was closely aligned with the transition 
trial decoded by the GLM-HMM, suggesting that they were indeed 
specific to motivation-state transition events (Fig. 6C; see fig. S14A 
for comparison between analysis periods that include and exclude 
the transition trial). Last, we parsed motivation-state transitions ac-
cording to direction (i.e., high to low and low to high). This indi-
cated that DRN activity covaried with high-to-low transitions but not 
low-to-high transitions [GLM3.4 tDRN;high-to-low transitions(58) = −2.51, 
P = 0.015; tDRN;low-to-high transitions(58) = −0.91, P = 0.365; Fig. 6B]. To-
gether, these analyses suggested that DRN—and DRN specifically—
implemented negative changes in intrinsic motivation for rewards.

Noninvasive disruption of DRN perturbs 
motivation-state transitions
fMRI recordings linked DRN to behavior in two complementary 
ways; (i) DRN coded the richness of the environment, which modu-
lated an animal’s pursue-versus-reject decisions toward specific 
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Fig. 6. Motivation-state activity in DRN is spatially and temporally specific. (Ai-ii) Motivation-state transitions affected BOLD signal in DRN but not neighboring fea-
tures like MRN and the 4th ventricle, confirming that the pattern was DRN specific. (B) The time course of the effect that low-to-high (pink) and high-to-low (red) motivation-
state transitions have on DRN BOLD activity. The effect is strongest for high-to-low state transitions. Inset panel shows distribution of peak effect sizes. (C) We initially tested 
the effect of motivation-state transitions on brain activity in a symmetric seven-trial window centered on the transition trial (i.e., the transition trial ±3 trials). This indicated 
that transitions were represented in the BOLD activity of DRN (Fig. 5B). We confirmed that this effect was not an artefact of our initial window selection by iterating the 
analysis over different seven-trial windows comprising transitions events. This showed that the effect was robust to window position [t(t–5):(t+1)(58) = −2.63, P = 0.011; 
t(t–4):(t+2)(58) = −3.69, P < 0.001; t(t–3):(t+3)(58) = −2.70, P = 0.009; t(t–2):(t+4)(58) = −2.60, P = 0.012; t(t–1):(t+5)(58) = −2.69, P = 0.009; t(t–0):(t+6)(58) = −1.88, P = 0.065; GLM3.6]. 
Note that the windows featuring the least overlap with decoded motivation transitions show nonsignificant effects [t(t–6):(t+0)(58) = −1.34, P = 0.180; t(t–0):(t+6)(58) = 
−1.88, P = 0.065]. Inset (C) shows mean ± 95% CI of transition effect across time windows. x axis indicates position of transition period relative to decoded transition 
time (where t = 0 represents decoded transition trial). In time course graphs (A-i and B), lines and shadings show the mean and SE of the β weights across the sessions, 
respectively. Effect-size graphs (A-ii and C) show size of the peak regression weight in the time course selected using an unbiased leave-one-out procedure (see Materi-
als and Methods). Dots indicate peak regression weight from individual sessions. Error bars in (B) inset show SD of session-wise regression weights. *P < 0.05, **P < 0.01, 
***P < 0.001.
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reward opportunities, and (ii) DRN coded transitions between mo-
tivation states, and therefore changes in reward pursuit over multi-
trial timescales. We tested DRN’s causal contribution in these respects 
with a second experiment using TUS (Fig. 7A)—a minimally invasive 
and reversible technique that disrupts brain activity via kinetic inter-
actions between focused ultrasound waves and the neuron and astro-
cyte membrane that, in turn, induce changes in adjacent synapses 
(29, 30). As a result, short TUS trains of the type we used are known 
to produce short-term changes in neural activity by inducing N-
methyl-d-aspartate–dependent plasticity (31–35) leading to changes 
in activity in spatially circumscribed gray brain regions that are tar-
geted. As a result, a region targeted with TUS alters its responsiveness 
to activity in interconnected areas, while nonstimulated areas show 
no such change (17).

We used an offline TUS protocol that modulates neural activity 
for over an hour after sonication (17, 36, 37). We compared DRN-
TUS to three control conditions: a sham condition (sham-TUS), an 
active cortical control (superior temporal sulcus; STS-TUS), and an 
additional active subcortical control in VTA. We chose VTA as a 
subcortical control region because it was implicated in motivation 
states during fMRI recordings in distinct ways to DRN, thereby al-
lowing us to test the specificity of DRN’s function. We chose STS as 
our active cortical control condition because it is a region closest to 
the transducer position when TUS is targeted to DRN and through 
which the ultrasound beam might pass when targeting the DRN. It 
is therefore ideally located to rule out any potential side effect of 
sound beams on brain structures due to some process of reflection 
or refraction from skull.

B C

F

A

G

D

H

E

)
(

. . .

( )

)(

)
(

)
(

Fig. 7. DRN is causally involved in the relationship between the environment and behavior. (A) We investigated the causal contribution of DRN to behavior with TUS. 
(B) Simulation of ultrasound propagation under the TUS protocol suggested target-specific sonication after DRN-TUS and VTA-TUS. Color scale indicates the probability 
of neuromodulation after bilateral DRN/VTA TUS (see fig. S15). The low impact probability corresponds to 0.5 MPa. High impact probabilities at each acoustic focus are 
shown in fig. S15. (C) DRN-TUS disrupted DRN (red) connectivity with key brain regions while leaving VTA (blue) connectivity intact. The opposite pattern occurred after 
VTA-TUS. Radial axis shows absolute difference in connectivity between seed and target ROIs pre-versus-post TUS (see Materials and Methods). Targets included vlPFC, AI, 
ACC, Hb, SN, VERSUS, MRN, and DRN. (D) DRN-TUS attenuated the richness of the environment’s effect on behavior relative to sham-TUS, STS-TUS, and VTA-TUS. Points and 
whiskers indicate means (±SEM) pursue rate across deciles of environmental richness. (E) DRN-TUS attenuated behavioral history’s effect on current behavior relative to 
sham-TUS and STS-TUS, and marginally compared to VTA-TUS. y axis indicates difference in pursue rate based on behavioral history (pursue-ratebehav.history==pursue – 
pursue-ratebehav.history==reject). Positive values indicate that animals were more likely to pursue a reward if they also pursued the previous one. Points indicate differences 
in mean pursue rates per session. (F) Posterior probability of state transitions in GLM-HMMs fitted to each TUS condition. The central tendency of DRN-TUS posteriors is 
lower than STS-TUS, VTA-TUS, and sham-TUS posteriors. (G) Fewer motivation-state transitions occurred in DRN-TUS sessions versus all other TUS conditions. Data shown 
as sum of all motivation-state transitions in each TUS condition. (H) DRN-TUS diminished the relationship between the average value of recent opportunities and 
motivation-state level. Dots and whiskers indicate means (±SEM) level of high-motivation state occupancy in deciles of average expected value (Ave. EV). *P < 0.05, 
**P < 0.01, ***P < 0.001.
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We first performed simulations of acoustic wave propagation 
under the TUS protocol, which established that selective perturba-
tion of DRN and VTA was feasible despite their diminutive size 
and anatomical location (Fig.  7B and fig.  S15). We then empiri-
cally tested the TUS protocol’s anatomical specificity by measuring 
changes in functional connectivity between DRN, VTA and a se-
ries of key brain areas before-versus-after DRN-TUS and—as a 
control—before-versus-after VTA TUS. This showed notable and 
selective changes in region-specific functional connectivity: DRN-TUS 
disrupted DRN’s ordinary patterns of coactivation with key inter-
connected regions but left VTA connectivity unchanged (Fig. 7C; 
see also fig. S18). Conversely, after VTA-TUS, VTA connectivity 
changed but DRN connectivity did not (Fig. 7C). In combination 
with the sonication simulations, this indicated that TUS induced 
safe, efficacious, and highly localized disruption of DRN and VTA 
activity, analogous to previous investigations of TUS in cortical 
brain regions (17, 36, 37).

We tested the same monkeys from the fMRI experiment on five 
sessions of the behavioral task per TUS condition in counterbal-
anced and pseudorandomized order (see Materials and Methods). We 
first investigated how TUS modulated the influence of (i) richness of 
the environment and (ii) behavioral history, which were the key fac-
tors driving the pursue-versus-reject decisions made on each trial. 
DRN-TUS diminished the effect of richness of the environment rela-
tive to all other conditions (GLM4.1; βDRN-TUS versus sham-TUS*richness = 
−0.18, SE = 0.05, P < 0.001; βDRN-TUS versus STS-TUS*richness = −0.12, 
SE = 0.06, P = 0.025; βDRN-TUS versus VTA-TUS*richness = −0.12, SE = 
0.06, P = 0.035; Fig. 7D). Similarly, DRN-TUS clearly reduced the 
effect of behavioral history relative to sham-TUS and STS-TUS and 
produced a marginal difference relative to VTA-TUS (GLM4.2; βDRN-

TUS versus sham-TUS*behave-history = −0.42, SE = 0.11, P < 0.001; βDRN-TUS 

versus STS-TUS*behave-history = −0.24, SE = 0.11, P = 0.027; βDRN-TUS versus 

VTA-TUS*behave-history = −0.20, SE = 0.11, P = 0.057; Fig. 7E). There 
were no differences between active control conditions (STS-TUS 
and VTA-TUS) and sham-TUS (GLM4.1; Fig. 7, D and E; βVTA-TUS 

versus sham-TUS*richness = −0.06, SE = 0.06, P = 0.282; βSTS-TUS versus sham-

TUS*richness = −0.06, SE = 0.05, P = 0.306; GLM4.2; Fig. 7E; βVTA-TUS 

versus sham-TUS*behavioral-history = −0.20, SE = 0.10, P = 0.060; βSTS-TUS 

versus sham-TUS*behavioral-history = −0.18, SE = 0.11, P = 0.090). DRN, 
therefore, was specifically and causally involved in the impact of an 
animal’s recent reward environment and behavior on its present de-
cisions to pursue reward.

Next, we applied the GLM-HMM to behavioral data from the 
TUS experiment (see Materials and Methods). Our analysis focused 
on motivational-state transitions, which were a distinguishing feature 
of DRN activity in fMRI recordings. These recordings suggested 
that DRN was specifically involved in high-to-low motivational-state 
transitions, but we first performed the analysis in a direction-neutral 
way given the interdependence of time-series observations: Because the 
animals typically began the task in a high-motivation state [P(init-state = 
high) = 0.70], reducing the likelihood of high-to-low transitions 
would necessarily reduce the frequency of low-to-high transitions in a 
fixed-length time series, even if the underlying low-to-high transition 
probability was unchanged. The analysis showed a notable pattern 
whereby DRN-TUS reduced the likelihood of transitions relative to 
all other TUS conditions (GLM4.3; βDRN-TUS versus sham-TUS = −1.08, 
SE  =  0.27, P  <  0.001; βDRN-TUS versus VTA-TUS  =  −0.71, SE  =  0.29, 
P = 0.013; βDRN-TUS versus STS-TUS = −0.57, SE = 0.29, P = 0.051; Fig. 7, 
F and G). There was no effect of VTA-TUS relative to sham-TUS 

(GLM4.3; βVTA-TUS versus sham-TUS = −0.37, SE = 0.22, P = 0.090). There 
was a moderate difference between STS-TUS and sham-TUS, but this 
was outweighed by the fact that DRN-TUS reduced the likelihood of 
transitions even relative to STS-TUS (GLM4.3; βSTS-TUS versus sham-TUS = 
−0.51, SE = 0.23, P = 0.022; βDRN-TUS versus STS-TUS = −0.57, SE = 
0.29, P =  0.051). DRN-TUS was, moreover, the only condition 
that reduced high-to-low transitions specifically (GLM4.4; βDRN-TUS 

versus sham-TUS = −0.77, SE = 0.32, P = 0.016; βVTA-TUS versus sham-TUS = 
−0.33, SE  =  0.28, P  =  0.238; βSTS-TUS versus sham-TUS  =  −0.43, 
SE = 0.29, P = 0.139). Last, DRN-TUS caused animals to spend 
more time in high-motivation states relative to sham-TUS (GLM4.5; 
βDRN-TUS versus sham-TUS = 0.28, SE = 0.07, P < 0.001), consistent with 
the idea that DRN-TUS prevented animals from transitioning to 
low-motivation states. Note that motivation-state transitions are 
rare events, regardless of the TUS condition. However, our analysis 
clearly shows that DRN disruption significantly reduces or even 
eliminates these events, compared to other conditions (see fig. S16 for 
data from individual animals).

Last, we sought to specify how DRN controlled transitions be-
tween motivation states. To do so, we returned to an earlier analysis 
demonstrating that motivation states were matched to the availability 
of rewards: In brief, animals were more likely to occupy high-
motivation states when there were many high-value rewards available, 
analogous to the way that animals pursued more opportunities in 
rich environments (Fig. 4H). Given DRN’s critical involvement in 
the latter phenomenon, we asked whether its control of motivational-
state transitions was mediated by the availability of rewards. Consis-
tent with this view, DRN-TUS diminished the relationship between 
the availability of rewards and motivation states relative to all other 
TUS conditions (GLM4.5; Fig. 7H; βDRN-TUS versus sham-TUS*Ave.EV = 
−0.28, SE = 0.07, P < 0.001; βDRN-TUS versus STS-TUS*Ave.EV = −0.29, 
SE = 0.07, P < 0.001; βDRN-TUS versus VTA-TUS*Ave.EV = −0.30, SE = 0.07, 
P < 0.001). There were no effects of VTA-TUS or STS-TUS relative 
to sham-TUS (βVTA-TUS versus sham-TUS*Ave.EV  =  −0.03, SE  =  0.06, 
P  =  0.610; βSTS-TUS versus, sham-TUS*Ave.EV  =  −0.05, SE  =  0.07, P  =   
0.499). Intriguingly, DRN-TUS’s influence was more prominent for 
the link between low-value reward environments and low-motivation 
states, which dovetailed with fMRI signals implicating DRN specifi-
cally in high-to-low transitions (GLM4.5; for Ave. EV  <  μAve.EV 
βDRN-TUS*Ave.EV = −0.52, SE = 0.19, P = 0.006; for Ave. EV ≥ μAve.EV 
βDRN-TUS*Ave.EV = −0.13, SE = 0.15, P = 0.403). Together, these re-
sults suggest that DRN has a fundamental role in ensuring that an 
animal’s motivation state is appropriate to the distribution of re-
wards in the environment.

A cortico-subcortical circuit reconciles behavior with 
the environment
In a final analysis, we examined interactions between DRN and oth-
er brain regions that might relate to its behavioral function. To do 
so, we first reverted to the analysis of brain activity and behavior that 
did not rely on the GLM-HMM framework (Fig. 5A). Here, DRN, 
VTA, and Hb represented an animal’s environment with complemen-
tary patterns of activity, which suggested that they might form a cir-
cuit for reconciling decisions with the surrounding environment. To 
test the circuit hypothesis, we expanded our purview to functionally 
related cortical ROIs in supplementary motor area (SMA), anterior 
cingulate cortex (ACC), and anterior insula (AI) based on previous 
work implicating these regions in behavioral change (9, 36, 38–40). 
Only AI activity signaled the richness of the environment with the 
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distinctive contingency on behavioral history seen in subcortical 
ROIs, and we therefore retained AI as a cortical ROI for connectiv-
ity analysis (see fig. S13).

Next, we asked which ROIs coded the pursue-versus-reject deci-
sion taken on each trial—in other words, which ROIs might be the 
output of the putative decision-making circuit. This demonstrated that 
BOLD activity time-locked to decision-making in both Hb and AI 
represented pursue-versus-reject decisions [GLM3.3; tpursue;Hb(58) = 
3.24, P = 0.011; tpursue;AI(58) = 2.78, P = 0.028; fig. S12]. We then 
conducted psychophysiological interaction (PPI) analyses to probe 
changes in pairwise connectivity between regions as a function of 
the environment (41). PPIs mirrored the patterns observed earlier: 
Connectivity between DRN and AI increased as a function of 
richness of the environment after rejections [GLM3.6; tPPI(DRN-AI 

by richness);rejected(58) = 2.84, P = 0.006; Fig. 8B] and increased between 
VTA and AI after pursuits [GLM 3.6; tPPI(AI-VTA by richness);pursued(58) = 
2.14, P = 0.036; Fig. 8D]. Adopting the GLM-HMM analysis ap-
proach showed a corresponding pattern of results (GLM3.7; Figs. 8B 
and 6A-iii). Connectivity between Hb and AI was not modulated 

by the richness of the environment but instead by the pursue/reject 
decision taken on each trial, consistent with a role in translating 
motivation to action (42) [GLM3.8 tPPI(AI-Hb by action)(58) = 2.25, P = 
0.028; Fig. 8C).

DISCUSSION
We provide converging evidence that DRN controls changes in an 
animal’s motivation for rewards. We observed distinctive patterns of 
DRN activity corresponding to the richness of an animal’s environ-
ment and transitions between statistically delineated motivation 
states. We followed this with minimally invasive DRN disruption, 
which diminished the environment’s effect on decision-making and 
reduced the frequency of motivation-state transitions. This suggests 
that DRN is causally involved in transitions between a high-motivation 
state occupied when rewards are abundant and a low-motivation 
state engendered by reward scarcity.

We used a GLM-HMM approach to describe features of animal 
behavior that are difficult to capture with a standard GLM. In 

A

B

C

D

Fig. 8. A brain circuit for reconciling an animal’s motivation with its environment. (A) PPIs indicated the following patterns of cortico-subcortical connectivity. 
(B) Connectivity between DRN and AI increased as a function of richness of the environment in the aftermath of rejections (GLM3.6; top), and as a function of high-to-low 
motivation-state transitions [bottom; GLM3.7; tPPI(high-to-low) = 3.64, P < 0.001], consistent with DRN’s fMRI signals (C) connectivity between AI and Hb increased as a func-
tion of an animal’s ultimate decision about whether to pursue a reward opportunity (GLM3.8). (D) In contrast to DRN, connectivity between VTA and AI increased as a 
function of richness of the environment in the aftermath of pursuits (GLM3.6; top) and during high-motivation states (GLM3.7; tmotivation-level = 2.47, P = 0.016). *P < 0.05, 
**P < 0.01, ***P < 0.001.
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particular, we tested the hypothesis that animals adopted different 
motivation states using a GLM-HMM in which only the bias pa-
rameter changed between HMM states. This model allowed us to 
identify periods where animals were more likely—all else equal—to 
pursue rewards, and periods where animals were less likely—all else 
equal—to pursue rewards, and to identify points of transition be-
tween these periods. The number of trials in our dataset did not al-
low us to implement more complicated versions of the GLM-HMM 
where, for example, the transition matrix is modeled as a function of 
covariates instead of as fixed parameters (43). A GLM-HMM with a 
covariate-dependent transition matrix would be an interesting sub-
ject for future research. Similarly, we acknowledge that other de-
scriptive and/or mechanistic models would likely reveal further 
interesting features of behavior (44–46). Here, however, we focused 
on the specific hypothesis that animals would experience shifts in 
the baseline likelihood of pursuing rewards.

Our findings dovetail with two prevailing views on DRN func-
tion: The first has emphasized DRN’s role in behavioral changes, 
including between exploration and exploitation or patience and im-
pulsivity (5, 47, 48). For example, the firing rate of DRN serotonin 
neurons increase during waiting for delayed reward (49). The sec-
ond has linked DRN activity to statistical aspects of rewards, like the 
general value and/or uncertainty of the options characterizing an envi-
ronment (6–10, 50). We observed similar brain-behavior relationships 
here, and the co-occurrence of both phenomena suggests that they 
are fundamentally related. In support of this view, we found that 

DRN disruption impaired animals from matching their motivation 
state with the availability of rewards, and specifically from entering 
low-motivation states during low-value environments, which was 
an important motif in their normal behavior. In tandem with previ-
ous studies, this indicates that DRN is critical for reconciling an 
animal’s behavior with the reward statistics of the surrounding 
world (Fig. 9). An alternative interpretation of the DRN disruption 
effect is that fewer transitions are decoded because the two motiva-
tion states were more similar to one another. Although the motiva-
tion states identified during DRN TUS sessions were moderately 
more similar to one another than the motivation states identified in 
other conditions (see fig. S17), it is important to emphasize that the 
animals clearly exhibited two discrete motivation states after DRN 
TUS and that fewer transitions between states occurred in the DRN 
TUS condition (Fig. 7, F and G). Furthermore, the motivation-state 
transition interpretation is consistent with the correlation between 
transition events and DRN activity observed in fMRI recordings 
(Figs. 5B and 6). We found no evidence that DRN activity was re-
lated to motivation-state level (high versus low; Fig. 5B), which 
one would expect if DRN’s role was to maintain or distinguish the 
motivation-states themselves.

Several previous studies have identified DRN activity in tasks 
where there is fundamental uncertainty about the reward available 
on each trial (3, 51, 52). In contrast, the properties of specific reward 
opportunities were explicitly signaled in our paradigm, and the key 
manipulation was the distribution of reward opportunities over 

B

A

Fig. 9. DRN controls motivation-state transitions as a function of the environment. (A) We provide converging evidence from recoding and disruption techniques 
that DRN controls transitions between high-motivation states occupied when rewards are abundant, to low-motivation states engendered by reward scarcity. We started 
by showing that the purse-versus-reject decision made on each trial was influenced by an animal’s recent history of reward (richness of the environment) and previous 
pursue-versus-reject behavior (behavioral history) on (Fig. 1, D to G). These effects indicated that behavior was autocorrelated, consistent with the idea that animals oc-
cupied an underlying hidden motivation state that could not be explained solely by the external environment (Fig. 2A). To test this hypothesis, we used a GLM-HMM 
framework. We identified state-like fluctuations in motivation to pursue rewards (Fig. 2, C to E) that were discrete, persistent, and biologically meaningful (Fig. 4). Using an 
optimized fMRI approach, we then identified three nuclei (DRN, HB, and VTA) that tracked animals’ external environment and GLM-HMM–derived motivation states. HB 
and VTA encoded the level of motivation state (whether animal was in a high or low motivation-state; Fig. 5B). DRN specifically encoded transitions between high-to-low 
motivation states (Fig. 5B). Last, we complemented the fMRI results with a causal intervention. We showed that disrupting DRN perturbed the previously observed effects 
of the external environment on behavior (Fig. 7, D and E) and, importantly, reduced the likelihood of transitions in motivation-states (Fig. 7, F to H). (B) We thereby distin-
guish DRN’s function from interconnected subcortical nuclei, which are also implicated in motivation. In combination with previous studies, we suggest a complemen-
tary scheme in which DRN (left) controls transitions between high-to-low motivation states, VTA (middle), implements and maintains the changes in reward sensitivity 
that characterize motivation states, and habenula (right) integrates an animal’s internal and external context to control its behavioral output.
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time. This might explain the absence of reward-uncertainty signals 
in DRN fMRI recordings. It might similarly explain VTA’s involve-
ment in the task. Although it is perhaps unexpected that VTA did 
not feature more prominently given its well-documented links to 
reward and motivation, the task did not require reinforcement 
learning, which is a key function of dopaminergic nuclei (53). In-
stead, we observed patterns of VTA activity corresponding to (i) the 
richness of the environment after pursuits and (ii) trial-by-trial 
motivation-state level, which suggest a cognate role in driving be-
havior in proximity to rewards (Fig. 9) (23).

How might DRN coordinate with other regions of the primate 
brain to control decisions? Unlike other subcortical ROIs, we found 
that activity in Hb covaried with both an animal’s pursue/reject de-
cisions and the individual factors that shaped them. This is consis-
tent with an emerging theory that Hb integrates motivationally 
salient information from its diverse range of afferent connections to 
control motor output via the basal ganglia (Fig. 9) (42, 54–56). Sim-
ilar patterns of activity occurred in AI, which is perhaps the compu-
tational source of representations concerning rewards obtained over 
multiple time points (9, 42, 57). Although it is difficult to specify 
directions of influence from fMRI recordings, we observed patterns 
of functional connectivity consistent with communication be-
tween AI-DRN, AI-VTA, and AI-Hb—a scheme that matches 
well-documented patterns of anatomical connection (58, 59). Cortico- 
subcortical interactions of this kind echo a common neural motif 
whereby information synthesized in the cortex is transmitted to 
subcortical nuclei, which have wide-ranging efferent connections 
capable of orchestrating brain-wide activity (42, 55).

The fact that animals were ceteris paribus more likely to pursue 
rewards in high-value environments controverts prominent formu-
lations of optimal reward-seeking (1), which argue that animals 
should be less selective during periods of reward scarcity on account 
of their homeostatic requirements. Nevertheless, the pattern ob-
served ensures that animals maximize their reward intake in the 
manner that these theories envisage: Given that animals usually lack 
perfect knowledge about the richness or sparseness of future oppor-
tunities, a reasonable strategy is to concentrate their efforts on rich 
environments where they have the most to gain (9, 10, 23). In sup-
port of this interpretation, the GLM-HMM analysis identified per-
sistent motivation states in monkey behavior that were positively 
correlated with the availability of rewards.

Last, many neurons in DRN are serotonergic and that DRN is the 
principal source of serotonin to the mammalian forebrain (60, 61). 
Although the techniques we implemented are not serotonin specific, 
our results are consistent with several proposals about its function. 
We found (i) a positive correlation between DRN activity and re-
ward scarcity, evoking classic theories that link serotonin to punish-
ments and reward omissions (24, 62–64), and (ii) a causal relationship 
between DRN and changes in behavior, akin to serotonin’s role in 
choice perseveration (4, 5). The key finding in our experiment rela-
tive to previous work is that DRN controlled patterns of behavior 
that unfolded over multiple time points and not just specific rein-
forcement events or decisions. In a similar vein, it is possible that 
serotonin is important not for moment-to-moment decision-making 
per se but for changing the overarching strategy of an animal’s be-
havior and perhaps especially for changes that involve adverse feedback 
from the environment. Testing this hypothesis is a promising avenue 
for future experiments.

MATERIALS AND METHODS
Experimental model and subject details
The experiments were performed with four male rhesus macaques 
(M. mulatta). The sample size corresponded to those used in previ-
ous studies in which it had been possible to identify significant and 
reliable whole-brain fMRI recording and TUS across multiple test-
ing sessions but with the minimum number of animals. The animals 
were 10 to 12 years of age and weighed 14.30 to 17.09 kg. They lived 
in group housing with a 12-hour light-dark cycle and were afforded 
access to water for 12 to 16 hours on testing days and free access on 
nontesting days. All procedures were conducted under a license is-
sued by the UK Home Office in accordance with the Animal (Scien-
tific Procedures) Act 1986 and the European Union guidelines (EU 
Directive 2010/63/EU).

Behavioral training
All monkeys were fitted with MRI compatible cranial implants that 
facilitated head fixation during testing and training. Training was 
conducted in MRI compatible chairs designed to accommodate 
monkeys in a sphinx position and took place in custom-built envi-
ronments that replicated an MRI scanner. The animals were trained 
on simplified versions of the task in which they did not need to wait 
go-cue and action-outcome delays and were not exposed to con-
trolled changes in their reward environment. Go-cue and action-
outcome delays were then introduced and carefully increased over 
the course of training until they were sufficient for an fMRI experi-
ment (see below). Changes in the reward environment were intro-
duced after the animals were accustomed to the final delay timings. 
Testing for both the fMRI and TUS experiments began when the 
proportion of pursued trials per session was stationary over con-
secutive days.

Behavioral task
Animals performed a simple decision-making task involving se-
quential encounters with reward opportunities that appeared on a 
computer screen. Reward opportunities were presented in visual 
form via colored boxes (size of the box: 8 cm by 26 cm) that were 
filled with dots. The color of the stimulus indicated the number of 
juice drops that the opportunity was worth (red  =  1; green  =  2; 
blue = 3). The number of dots comprising the stimulus indicated the 
probability that reward would be delivered if the opportunity was 
pursued. Reward probabilities ranged between (0.05, 1), and dots 
indicated 0.05 linear increments of reward probability. The stimuli were 
designed so that dots gradually filled the box from the top downward.

Opportunities first appeared in the center of the screen before 
displacing either right or left (Fig. 1A). The displacement of the op-
portunity stimulus functioned as a go cue, which indicated that the 
opportunity was available for pursuit. Monkeys could pursue op-
portunities by manually responding to an infrared sensor corre-
sponding to the opportunity’s on-screen location—For example, if 
the opportunity displaced right, they needed to touch a sensor with 
their right hand, and vice versa if it displaced left. The go cue was 
designed to temporally dissociate decisions about pursuing op-
portunities from the motoric processes, which realized decisions 
in behavior. Similarly, the randomized right/left displacement of the 
opportunity prevented monkeys from motor planning during the 
decision phase. The durations separating opportunity onsets and go 
cues were drawn from go-cue ~ uniform(3, 4) and were optimized 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 11, 2025



Priestley et al., Sci. Adv. 11, eads1236 (2025)     27 June 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

13 of 20

for a canonical macaque hemodynamic response function (HRF) of 
approximately 4 s. Monkeys had 1 s to pursue opportunities after the 
go cue. After pursuing opportunities, the monkeys needed to wait 
action-outcome delays spanning A-O-delay ~ uniform(3, 4) before 
receiving potential juice rewards accompanied by visual reward 
feedback. The next trial then began after an inter-trial interval (ITI) 
spanning ITI ~ N(1, 4). If the monkeys did not pursue an opportu-
nity, they bypassed the action-outcome and reward-delivery dura-
tions and proceeded to the next trial. If the monkeys pursued 
opportunities before the go cue—i.e., prematurely—they needed to 
wait for the remaining duration of the opportunity presentation, in 
addition to go-cue, action-outcome, and reward-feedback durations. 
The opportunity that elicited the premature response was then re-
peated on the next trial.

Each session of the task comprised four blocks of 40 to 50 trials. 
Blocks were used to engender different reward environments by sys-
tematically controlling the reward-probability aspect of opportuni-
ties. Environments varied on two dimensions: (i) Richness was 
defined by the mean of the reward-probability distribution, where 
μrich = 0.80 and μpoor = 0.55, and (ii) stochasticity was defined by the 
width of reward-probability distributions, where predictable environ-
ments were generated from Gaussian distributions with σpredictable = 0.05 
and unpredictable environments from random-uniform distribu-
tions with ranges of 0.40 such that σunpredictable = 0.13. Blocks were 
characterized along both richness and stochasticity dimensions, 
which yielded four distinct environment types—rich-predictable, 
rich-stochastic, poor-predictable, and poor-stochastic. Each session 
featured one of each environment-type, and the order of environ-
ments was counterbalanced with respect to the richness dimension 
to avoid long periods of low-value offers (e.g., during consecutive 
poor environments), which were difficult for monkeys to perform. 
Environment types were indicated by visual cues that bordered the 
screen and indicated what kind of block the animals were currently 
in. The visual stimuli were abstract black and white patterns (see the 
diagonal dashed lines bordering the screen in the diagram of the 
task in Fig. 1A).

The task was implemented in MATLAB v2019 by MathWorks 
using Psychophysics Toolbox v3 (65) and presented on MRI-compatible 
screens (23in BOLD screen; Cambridge Research Systems) approxi-
mately 30 cm away from the subjects. Juice rewards consisted in a 
solution of water, blackcurrant cordial, and banana, and each juice 
drop was 1 ml. Pupillometric data were obtained during fMRI ses-
sions via an MR-compatible infrared EYElink 1000 eye-tracker de-
vice by SR Research Ltd. recording pupil diameter and gaze direction 
along x and y planes at a 250-Hz sampling rate.

Preprocessing and analysis of pupillometric data were performed 
in R and entailed the following steps [adapted from (66)]. Samples 
reflecting eye blinks were identified with a detection algorithm na-
tive to the EYElink device. Artefacts were defined as consecutive 
samples with discrepancies of >50 a.u. All samples within symmet-
ric 25 sample (i.e., 0.1 s) windows of artefacts or eye blinks were 
scrubbed and linearly interpolated, and interpolated time series 
were then low-pass filtered with a 4-Hz cutoff. These processes were 
performed for pupil size, x-gaze direction, and y-gaze direction 
time series, respectively, which were z-scored. We then regressed 
variance due to x-gaze direction and y-gaze direction from pupil 
size via linear regression and performed subsequent analysis using 
the residuals.

To incorporate pupillometry in our behavioral analysis, we ex-
tracted pupil size in specific epochs of the task, with a focus on peri-
ods just before and after the presentation of reward opportunities in 
which animals were making decisions. In particular, we quantified—
for each trial—mean pupil size 0.5 to 0 s before (ITI phase) and 0.5 
to 1.0 s after (decision phase) stimulus presentation. We did not 
select the first 0.5 s to avoid pupillometric responses reflecting sud-
den luminance changes, as when a visual stimulus first appears. 
When comparing the pupil size between motivation states (GLM2.4; 
Fig. 4F), we focused on pupil size during the decision phase. On all 
other occasions, when using it as a confound regressor to control for 
arousal, we focused on pupil size during the ITI phase. We chose 
this phase to make sure that it is not confounded by the brightness 
of the stimulus in front of the animal. Pupil size data were also used 
to reject periods of behavior, in which animals had their eyes shut 
(5.1% of the trials on average).

Animals were given four blocks of 40 to 50 trials. They performed 
one session per day, at the same time of the day.

Behavioral analysis
Our initial analysis of behavior characterized the influences on bino-
mial pursuit/reject decisions. We accomplished this with mixed-effect 
binomial GLMs with subject identity as a random variable—This 
means that all GLMs account for inter-subject variability for the ef-
fect of interest. We began by investigating the time horizon of an 
animal’s sensitivity to past rewards with the following GLM (GLM1.1)

where β0–13 are fixed-effects (β0 is the intercept), μ0 is the by-subject 
random intercept, and ε is an error term. Decision is animals’ pursue 
(coded as 1) versus reject (coded as 0) decisions. Reward-magnitude 
is the reward magnitude of the current opportunity, which varies be-
tween one and three drops of juice. Reward-probability is the reward 
probability of the current opportunity, which varies between 0.35 and 
1. Reward-outcome is the actual received reward and varies between 
zero (no reward), one, two, or three drops of juice. The small number 
of subjects precluded fitting GLM1.1 with the full random-effects 
structure—that is, affording all predictors random effects for each sub-
ject. To assess the significance of past reward outcomes while also tak-
ing inter-subject variability into account, we therefore fit an iterative 
series of GLMs in which one of the previous outcome predictors was 
given a random slope (e.g., in the first GLM, reward-outcomet−1 was 
given a random slope). We assessed the statistical significance of past 
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outcome regressors using the random effect in the relevant GLM. Fig-
ure  1D shows the outcome of this analysis. Given the results from 
GLM1.1, we operationalized the richness of an animal’s reward envi-
ronment as a moving average with a retrospective five-t rial window, 
and the stochasticity of its environment as the SD of that reward 
rate as follows (richness and stochasticity of environment)

We implemented the following model to assess the factors influ-
encing pursuit/reject decisions (GLM1.2)

where β0–6 are fixed-effects, μ0 is the by-subject random intercept, 
and ε is an error term. The small number of subjects precluded fitting 
GLM1.2 with the full random-effects structure. We therefore fit an 
iterative series of models in which the key predictors of interest—
environment-richness and environment-stochasticity—were indi-
vidually afforded random effects by animal. All mixed-effects GLMs 
were performed in R, and models were fit via maximum likelihood 
estimation as implemented in the lme4 toolbox. We then fit the fol-
lowing GLMs in using the same procedure (GLM1.3)

where β0–6 are fixed-effects, μ0 is the by-subject random intercept 
and ε is an error term.

Behavioral modeling
We used a GLM-HMM to probe time-varying patterns in behavior 
that might reflect internal motivation states. A GLM-HMM is an 
extension of the GLM that consists of two parts. The HMM part of 
the model assumes that time series events arise from so-called hid-
den states, which produce observations according to state-dependent 
probability distributions (18, 19). These states bear Markov relations 
to one another, such that the state at time t is determined strictly by 
the state at time t – 1, and the respective probabilities of transition 
between states. A simple HMM of animal behavior in this context, 
for example, might comprise states in which responses arise from 
binomial distributions with state-dependent probability parameters 
that reflect changes in an animal’s motivation (i.e., probability of 
pursuing) across time.

The GLM part of a GLM-HMM parameterizes state-dependent 
probability distributions according to predictors (18). The weights 

afforded to each predictor can vary from state to state, which enables 
the model to capture time-varying differences in an animal’s decision- 
making process. We implemented a GLM-HMM in which pursuit/
reject decisions were parameterized by bias terms, in addition to pre-
dictors for the expectation value of the specific opportunity animals 
were faced with on the current trials (cued to the animals by the color 
of the stimulus and the number of dots comprising the stimulus) and 
binary environment cues indicating the experimentally manipulated 
richness and stochasticity of the reward environment (cued to the 
animals by abstract black and white patterns bordering the screen). 
We were interested in internal states of motivation—that is, changes in 
an animal’s intrinsic propensity to pursue rewards. We therefore let only 
the bias parameter(s) change between states and constrained the weight 
on expectation value and environment-cue parameters to be the same 
across states. Formally

where y ∈ {pursue, reject}T is the animal’s decisions across T trials, 
zt is the HMM state at trial t and zt ∈ {1,..., K} such that there are 
K states, xt ∈ ℝM is a matrix of M predictors in the GLM part of the 
model at time t, and wk ∈ ℝM represents M GLM weights over pre-
dictors that are specific to state k. Transitions between the states un-
fold according to a transition matrix A ∈ ℝK×K

where transition matrix is stationary. The joint probability of behaviors 
and HMM states is given by

where τ ∈ ℝK is the initial state distribution such that τk = p
(

z1=k
)

 . 
The likelihood function was fit to behavioral data via Markov chain 
Monte Carlo optimization implemented in STAN (67). For fMRI 
sessions, GLM-HMMs were fit to each individual animal’s behavior. 
For TUS sessions, GLM-HMMs were fit for each stimulation condition.

We probed the explanatory benefit of the GLM–HMM frame-
work by fitting a series of models with K ∈ {1, 2, 3, 4, 5} states. This 
involved a five-fold cross-validation protocol in which models were 
iteratively fit to 80% of sessions and tested on the remaining 20% of 
sessions (18). This process was performed within each animal. The 
best fitting model was determined on the basis of the log-likelihood 
of held-out sessions (see fig. S3). In Fig. 2, we further report session-
wise Akaike Information Criterion (AIC) scores—a well-established 
and easily interpretable metric of model fit that penalizes model 
complexity and is a demanding test for GLM-HMMs with K ≥ 2 be-
cause additional states increase complexity exponentially.

We further validated the GLM-HMM framework using simulated 
data. To begin, we tested whether the fitting procedure accurately re-
covered the parameters used to generate simulated datasets by taking 
a fitted binomial GLM (i.e., K = 1) and two-state GLM-HMM for an 
example animal and generating 10 datasets comprising 16 sessions 
from each model (i.e., the typical size of the behavioral data recorded 
from each animal). We then implemented the fitting procedure on 
simulated datasets and tested (i) whether the correct number of 
HMM states was recovered (one state versus two states), and (ii) 
whether the correct parameters were identified in the two-state case 
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(see fig. S8). We additionally examined simulated data for qualitative 
patterns that were reminiscent animal behavior (Fig. 3). After model 
selection, we decoded the maximum a posteriori sequence of HMM 
states in each session via the Viterbi algorithm (67)

We used simulated data from a two-state GLM-HMM to validate 
the Viterbi decoding algorithm (Fig. 4, A to C). Decoding the HMM 
states allowed us to quantify their impact on behavior, which we did 
using the following mixed-effects GLMs with subject identity as the 
grouping variable (GLM2.1)

where β0–5 are fixed-effects, μ0–1 are by-subject random effects for 
intercepts and motivation level, respectively, and ε is an error term. 
Motivation-level ∈ {0,1} is a binary variable reflecting the motiva-
tion state (low versus high) occupied on trial t. We identified 
motivation-state transitions by searching for cases where decoded mo-
tivation states were different across consecutive trials (i.e., motivation- 
levelt ≠ motivation-levelt–1). We compared behavior before-versus-
after motivation-state transitions with the following mixed-effects 
GLM (GLM2.2):

where β0–5 are fixed-effects, μ0–1 are by-subject random effects for 
intercepts and time from transition, respectively, and ε is an error 
term. Before-versus-after transition was a binary variable that grouped 
trials into two categories: (i) “before-transition” trials, defined as the 
five trials preceding a motivation-state transition, and (ii) “after-
transition” trials, defined as the five trials in the immediate aftermath 
of a transition. We performed GLM2.2 separately for low-to-high and 
high-to-low motivation-state transitions. We then characterized the 
GLM-HMM’s convergent validity by comparing decoded states with 
variables that should change with motivation: (i) reaction-time, and 
(ii) pupil-size. To do this, we implemented the following mixed-effects 
GLMs (GLM2.3 and GLM2.4)

where β0–4 are fixed effects and μ1 are random effects within each 
subject. We did not implement random intercepts (i.e., μ0) for either 
model because pupil size and reaction time were z-scored within 

subjects during preprocessing. This meant that the central tendency 
of within-subject distributions for reaction time and pupil size was 
the same value (i.e., 0), and it was not necessary to add terms captur-
ing inter-subject differences.

We used changes in decoded HMM states to examine the tempo-
ral dynamics of motivation states. We were particularly interested in 
links between motivation states and aspects of an animal’s external 
environment, like the recent history of reward opportunities it had 
been presented with. We quantified the latter by calculating a moving 
average of the expectation value of reward opportunities received in 
the previous five trials.

We used availability of rewards (Ave. EV) to predict motivation 
states via the following mixed-effects binomial GLM (GLM2.5)

where β0–3 are fixed effects and μ0–1 are random effects within each 
subject. We used the EV—the expected value of the current offer on 
a given trial—to control for the effects of the current offer on an 
animal’s motivation state. We used EV rather than the separate 
reward-magnitude and reward-probability dimensions of offers be-
cause Ave. EV and reward probability were meaningfully correlated 
(r = 0.49). This correlation was an inherent feature of the task be-
cause reward environments were engendered by manipulating the 
distribution of reward probabilities over time. This created autocor-
relations in reward probabilities over time and, therefore, correlations 
between reward-probability and retrospective summary statistics of 
task events like the Ave. EV. Scaling reward probabilities by reward 
magnitude as in the expectation-value formula dampened this cor-
relation (r = 0.23), meaning that EV and Ave. EV could be part of the 
same regression without collinearity.

Acquisition, reconstruction, and preprocessing of MRI data
During collection of fMRI data, the monkeys were head-fixed in a 
sphinx posture within an MRI compatible chair by Rogue Research. 
MR images were acquired with a horizontal bore clinical 3T scanner 
with a 15-channel nonhuman primate–specific receive coil by RAPID 
Biomedical. Structural images were acquired during a previous ex-
periment (36). Functional images were acquired via the CMMR 
multiband gradient-echo T2* echo planar imaging (EPI) sequence 
designed specifically to achieve high signal-to-noise in subcortical 
structures (68,  69). This was characterized by 1.25-mm isotropic 
voxels with a repetition time (TR) of 1282 ms, echo time (TE) of 
25.40 ms, multiband acceleration factor MB = 2, in-plane accelera-
tion factor R = 2, and flip angle of 63°. The functional scans covered 
the whole brain (field of view, 120 mm). There were 42 slices at cor-
onal orientation with foot-to-head phase encoding direction and 
1.25-mm thickness.

Offline reconstruction of the raw functional data was performed 
following the dynamic off-resonance correction method developed 
by Shahdloo and colleagues (70). In summary, standard Nyquist 
ghost correction and dynamic zeroth-order B0 correction were ap-
plied first. Then, the EPI reference navigator data acquired at every 
time point were compared to navigator data from single-band refer-
ences to estimate first-order dynamic off-resonance perturbations 
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arising from the awake animal’s body movements. Last, the off-
resonance estimates were used to correct the raw data before recon-
struction.

Preprocessing of MR images was performed with a combination 
of FMRIB’s software library, Advanced Normalization Tools, the 
Human Connectome Project Workbench, and Magnetic Resonance 
Comparative Anatomy Toolbox (71). Although monkeys were head-
fixed during MRI acquisition, incidental limb and body movements 
caused time-varying distortions in the B0 magnetic field and there-
fore nonlinear motion artefacts along the phase encoding direction. 
To account for this, a low-noise EPI volume was identified for each 
session and then implemented as a reference to which other vol-
umes were nonlinearly registered slice by slice along the phase-
encode direction. Aligned and distortion-corrected EPIs were then 
registered nonlinearly first to monkey-specific high-resolution im-
ages and then to a group template in CARET f99 macaque space. 
Further details of the group template construction are described 
elsewhere (37). Last, the functional images were temporally filtered 
(high-pass temporal filtering, 3-dB cutoff of 100 s) and spatially 
smoothed (Gaussian spatial smoothing, full-width half maximum 
of 2.5 mm).

Three measures were used to detect artefacts in the data: (i) For 
each slice in each volume the linear transform (in the y plane) from 
that slice to the corresponding slice in the mean reference image; (ii) 
the normalized correlation between that slice and the correspond-
ing slice in the mean reference image; (iii) for each volume, the cor-
relation between that volume (mean-filtered across z slices) and the 
mean reference image after correction. Volumes were removed 
when they exceeded 2.5 SDs above the median of each measure. The 
threshold was chosen to keep the number of censored volumes less 
than 10% of the total volumes. We also added 13 principal compo-
nents analysis components describing, for each volume, the warping 
from that volume to the mean reference image when correcting mo-
tion artefacts (i.e., they capture signal variability associated with 
motion induced distortion artefacts), as parametric regressors of 
noninterest that were not convolved in our GLMs.

fMRI data analysis
We focused our analysis of fMRI data on circumscribed a priori ROIs 
comprising DRN, VTA, SN, NB, LC, and Hb in the subcortex, and 
ACC, AI, and SMA in the cortex. Subcortical and SMA ROIs con-
sisted in anatomical masks that were drawn on a group structural 
template in CARET F99 macaque monkey space and then warped to 
individual structural and functional spaces by nonlinear transforma-
tion. These masks were constructed separately by two different asses-
sors based on the Rhesus Monkey Brain Atlas (72) and then evaluated 
on for convergence across assessors. ACC and AI ROIs were defined 
as 3-mm spheres centered on the peak of functionally relevant activa-
tion contrasts obtained in previous studies (9, 36).

We extracted the filtered time series of BOLD signal from each 
ROI. The extracted signals were then averaged, normalized, and up-
sampled by a factor of 15 (9, 36, 37). The upsampled data were then 
epoched to 6-s time windows spanning 1 s before to 5 s after the 
appearance of the reward-opportunity stimulus on each trial. We 
then examined the relationship between behavior and brain activity 
with ordinary least squares GLMs performed at each time point in 
each epoch.

Inferential statistics for time-course GLMs were performed us-
ing a leave-one-out cross-validation procedure designed to estimate 

the peak regression coefficient in each session without selection bias 
(9,  36,  37). For each session s (N  =  59), we determined the time 
point t at which the largest absolute-value regression coefficient oc-
curred in the remaining N – 1 (i.e., 58) sessions. We restricted our 
search for t to a 4-s window from 1 s after to 5 s after the decision-
making time—that is, a 4-s window centered on the mean macaque 
HRF. We then calculated the regression coefficient in session s at 
time t. We repeated this iteratively for each session, which yielded a 
series of 59 regression coefficients. We performed significance testing 
on regression coefficients with one-sample two-tailed t tests. To con-
trol for multiple comparisons, we applied the Bonferroni-Holm cor-
rection for any analysis performed on more than one ROI. For each 
GLM, we repeated this for each regressor in each ROI. All time course 
analysis was conducted in MATLAB using custom analysis scripts.

We implemented the following series of GLMs (GLM3.1, GLM3.2, 
GLM3.3, and GLM3.4)

where BOLDROI indicates a t-by-s matrix containing time-series 
data for a given ROI (where t is trial, and s is time sample). Pupil size 
and trial number were added as confound regressors to control for 
the effects of arousal and fatigue, respectively.

GLM3.2 was performed separately for subsets of trials in which 
animals pursued and rejected the previous opportunity, respectively.

where decision is the pursue-versus-reject decision made on a 
given trial.

where transition-period is a dummy-coded variable covering sym-
metric 7-trial windows (t – 3:t + 3) around decoded motivation-state 
transitions and motivation-state-level is the decoded motivation-state 
(high versus low) for a given trial. GLM3.4 was subsequently per-
formed with 7-trial transition-periods aligned to from (t – 6:t + 0) to 
(t – 0:t + 6) with respect to decoded transitions to compare the timing 
of transition-related signals (see Fig. 6). It was also performed sepa-
rately for low-to-high and high-to-low transition events (see Fig. 6).

We tested whether DRN coded the value of recently available re-
wards (Ave. EV) with the following GLM (GLM3.5)
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GLM3.5 was performed on data from DRN alone, as it was de-
signed to test a specific hypothesis arising from the combined neural 
and behavioral data. We used EV to control for the effects of the 
currently available offer instead of separate reward-magnitude and 
reward-probability regressors as in previous GLMs of BOLD signal. 
This is due to collinearity between Ave. EV and reward-probability 
regressors (see GLM2.5 for further explanation).

We probed changes in connectivity as a function of richness of 
the environment using the following PPI-GLM (GLM3.6)

where BOLDseed is a t-by-s matrix containing time-series data for 
seed regions in PPI analysis, and PPI is the interaction between 
BOLDseed and environment-richness regressors. GLM3.6 was per-
formed separately for subsets of trials in which an animals pursued and 
rejected the previous opportunity, respectively. Analogously, we tested 
differences in functional connectivity with respect to (i) motivation-
state level, and (ii) motivation-state transitions with the following 
PPI (GLM3.7)

where BOLDseed is a t-by-s matrix containing time-series data for 
seed regions in PPI analysis. The analysis was performed twice—once 
where PPI was the interaction between BOLDseed and motivation-
transition-period regressors, and once where PPI was the interaction 
between BOLDseed and motivation-state-level regressors. Last, we 
tested differences in functional connectivity with respect to pursue/
reject decisions with the following PPI (GLM3.8)

where BOLDseed is a t-by-s matrix containing time-series data for 
seed regions in PPI analysis, and PPI is the interaction between 
BOLDseed and decision regressors.

Transcranial ultrasound stimulation
TUS was performed using a four-element annular array transducer 
(NeuroFUS CTX-500, 64-mm active diameter, Brainbox Ltd., Cardiff, 
UK) combined with a programmable amplifier (Sonic Concept Inc.’s 
Transducer Power Output System, TPO-105, Brainbox Ltd., Cardiff, 
UK). The transducer was paired with a transparent coupling cone 
filled with degassed water and sealed with a latex membrane. The 
water was degassed for 4 to 5 hours before each stimulation session 
and was replaced after each session. The resonance frequency of the 
ultrasonic wave was set to 500 kHz. The stimulation protocol was 
based on previously established protocols in macaques (73). We 
used the following protocol: duty cycle, 30%; pulse length, 30 ms; 
pulse repetition interval, 100 ms; and total stimulation duration, 30 s. 

The pressure field from the transducer was measured in a water tank 
with a 75-μm diameter polyvinylidene difluoride needle hydro-
phone (Precision Acoustics, Dorset UK), which had been calibrated 
at 500 kHz by the National Physical Laboratory (Teddington, UK). 
The free-field spatial-peak pulse-average intensity (Isppa) at 60-mm 
focal depth was 120 W/cm2, which was consistent with the output 
given by the transducer manufacturer.

At the beginning of each stimulation session, the animal’s skull 
was shaved and a conductive gel (SignaGel Electrode; Parker Labo-
ratories Inc.) was applied to the skin. The water-filled coupling cone 
and the gel was used to ensure ultrasonic coupling between the 
transducer and the animal’s head. Next, the ultrasound transducer/
coupling cone was placed on the skull and a Brainsight Neuronavi-
gation System (Rogue Research, Montreal, CA) was used to position 
the transducer so that the focal spot would be centered on the tar-
geted brain region. There were four stimulation conditions: (i) DRN 
(target of interest); (ii) VTA (subcortical active control condition); 
(iii) STS (cortical active control condition); (iv) sham (passive con-
trol condition). DRN and VTA targets were approximately 50 mm, 
and the STS 35 mm, from the surface of the transducer (the exact 
focal distance depended on the subject). All targets were sonicated 
bilaterally for 60 s in total, with 30 s of stimulation applied to a target 
from each hemisphere. Sonication of the midline targets (DRN and 
VTA) from one hemisphere was immediately followed by sonica-
tion of the same target from the contralateral hemisphere [cross-
beam stimulation; (36)]. Sonication of the STS in one hemisphere 
was immediately followed by sonication of a homologous target in 
the contralateral hemisphere. Hemispheres were sonicated in a 
pseudo-random order. After stimulation, the monkeys were imme-
diately moved to a testing room for behavioral data collection. The 
sham condition completely matched a typical stimulation session 
(setting, stimulation procedure, neuro-navigation, targeting, trans-
ducer preparation, and timing of its bilateral application to the 
shaved skin on the head of the animal) except that sonication was 
not triggered. During the sham session, the montage was pseudo-
randomly positioned to target DRN, VTA, or STS. Each stimulation 
condition was repeated five times, on separate days, and the order of 
the stimulation sessions was pseudo-randomized for each animal. 
The stimulation was always performed at the same time of the day, 
and there was always a 24-hour gap between each session, regardless 
of it being a real or sham stimulation session.

Acoustic modeling
We simulated the propagation of acoustic waves produced by the 
TUS protocol as described by Yaakub and colleagues (74). In brief, 
we used k-wave—a k-space pseudospectral solver (75)—and kArray 
tools to obtain estimates for the pressure amplitude, peak intensity, 
and spatial distribution of TUS at steady state. First, we simulated 
the acoustic wave propagation in water (free field) to characterize 
ultrasound beam for a target intensity of 120 W/cm2 at 50-mm focal 
depth (focal depth of VTA and DRN from transducer). Next, we per-
formed the simulation for DRN and VTA targets in the skull. The skull 
was estimated from pseudo-CT images obtained from each monkey 
using a Black Bone MRI sequence (76). The skull was obtained by 
thresholding the pseudo-CT images at 1400 to 2100 Hounsfield Units 
(HU). A linear relationship between the pseudo-CT Hounsfield Units 
and the sound speed, as well as the density, and absorption coeffi-
cient was assumed as described elsewhere (77, 78). The simulation 
grid size was set to the size of the T1-weighted MRI with a grid 
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spacing of 0.5 mm, which results in approximately 6 points per 
wavelength in water and tissue and up to 12.4 points per wave-
length in bone.

Resting-state imaging data acquisition, preprocessing, 
and analysis
We further validated the TUS protocol by examining its effect on 
resting state coactivation patterns between VTA/DRN and key in-
terconnected cortical and subcortical regions. Awake resting-state 
fMRI (rs-fMRI) data were acquired for all four monkeys (the same 
animals as in experiments 1 and 2) pre-versus-post DRN-TUS and 
VTA-TUS, respectively. Preprocessing and analysis of rs-fMRI data 
have been described elsewhere (17, 73).

We characterized the effects of TUS on the coactivation of DRN/
VTA and ROIs by comparing rs-fMRI data collected before DRN/VTA 
TUS with the rs-fMRI data collected immediately after DRN/VTA 
TUS. Prestimulation and poststimulation rs-fMRI were collected on 
the same day. The impact of DRN/VTA TUS on coactivation patterns 
was quantified with seed-based connectivity analyses, which involved 
calculating a series of pairwise linear correlations in BOLD activity 
between a seed region (DRN or VTA) and the remaining ROIs. The 
resulting prestimulation connectivity fingerprints for DRN-TUS and 
VTA-TUS were then contrasted with poststimulation connectivity 
fingerprints before DRN-TUS and VTA-TUS (see Fig. 7C).

TUS data analysis
We characterized the behavioral effect of TUS by examining its two-
way interactions with key predictors of decision-making in a series 
of binomial GLMs. In these GLMs, the effect for TUS condition was 
constructed to compare each individual active stimulation condi-
tion (STS, VTA, and DRN) to sham-TUS as a reference. On some 
occasions, we compared DRN-TUS to one of the other active stimu-
lation conditions—for example, DRN-TUS versus STS-TUS. We did 
this by performing GLMs on subsets of data that included only the 
TUS conditions of interest. These analyses are specifically noted in 
the main text. We tested the following (GLM4.1, GLM4.2, GLM4.3, 
GLM4.4, and GLM4.5) to examine how TUS modulates the richness 
of the environment and behavioral history effects, respectively.

where β0–8 are fixed effects, μ0 is the by-subject random intercept, 
and ε is an error term.

logit
(

decision
t

)

=βo+β1reward-magnitude

+β2reward-probability+β3behavioral-history

+β4TUS-condition+β5
(

reward-magnitude∗reward-probability
)

+β6
(

behavioral-history∗TUS-condition
)

+β7(trial-number)+μ0+ε

where β0–7 are fixed effects, μ0 is the by-subject random intercept, 
and ε is an error term. The amount of data in each TUS condition 
for each subject prevented us from fitting models with more com-
plex random-effects structures for these models. We examined the 
influence of TUS on the frequency of transitions between motiva-
tion states with the following GLM

where, state-transition ∈ {0,1}, β0–5 are fixed-effects, μ0 is the by-
subject random intercept, and ε is an error term. We performed a 
similar GLM to examine the influence of TUS on high-to-low tran-
sitions specifically

where, state-decrease ∈ {0,1}, β0–5 are fixed-effects, μ0 is the by-
subject random intercept, and ε is an error term. We analyzed TUS’s 
influence relationship between motivation states and the availability 
of rewards (Ave. EV) with the following GLM

where, motivation-state ∈ {0,1} and the high-motivation state = 1 
(i.e., positive coefficients correspond to increases in the likelihood of 
occupying the high-motivation state), β0–5 are fixed-effects, μ0 is the 
by-subject random intercept, and ε is an error term. We performed 
GLM4.5 separately on behavioral data mean-split according to Ave. 
EV to determine whether DRN-TUS principally affected the influ-
ence between low-value environments and low-motivation states.

Supplementary Materials
This PDF file includes:
Figs. S1 to S18
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