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Synopsis
Successful compressed-sensing reconstruction often involves tuning one or more regularization weights. However, tuning the regularization weights is a
subject-specific, task-dependent and non-trivial task. Recent studies have proposed to determine the weights by minimizing the statistical risk of removing
significant coefficients using line searches across a range of parameters. However, the line-search procedures lead to prolonged reconstruction times. Here, we
propose a new self-tuning approach generalized for multi-coil, multi-acquisition CS reconstructions that leverage projection onto epigraph sets of l1 and TV
balls. The proposed method yields 7 to 9-fold gain in computational efficiency over conventional methods while enabling further improved image quality.

Introduction
Compressed-sensing (CS) MRI improves scan efficiency by reconstructing from randomly undersampled k-space acquisitions . The reconstruction is often cast as a
regularized optimization problem in which data-fidelity, transform-domain sparsity (e.g., via -norm penalty) and denoising (e.g., via total-variation (TV) penalty) are
simultaneously sought. Reconstruction quality heavily depends on the relative weighing of regularization terms against data fidelity. Unfortunately, tuning of regularization
weights is a subject-specific and computationally-intensive task.

Recently, we reported a self-tuning approach (SPE) for parameter-free reconstruction of multiple-acquisition balanced steady-state free precession (bSSFP) data . The -
norm of wavelet coefficients and TV of the image were regularized. In-line with recent studies , both  and TV weights were determined to minimize the statistical risk of
removing significant coefficients using line searches across a range of parameters, which led to prolonged reconstruction times.

Here, we propose a new self-tuning approach generalized for multi-coil, multi-acquisition CS reconstructions named PESCaT (Projection onto Epigraph Sets for
reconstruction by Calibration over Tensors). PESCaT leverages highly efficient geometric operations to determine the optimal regularization weights and apply them to the
data. Phantom and in-vivo results are presented for several applications to demonstrate 7 to 9-fold gain in computational efficiency over SPE.

Methods
K-space data were variable-density randomly undersampled . Unacquired data( ) were synthesized from acquired data ( ) via tensor interpolation across the
acquisition (n) and coil (d) dimensions :

where  is the reconstructed image for acquisition n and coil d,  is the wavelet operator at the ith level,  is the tensor interpolation operator,  is the TV-weight,
and  is the -weight.

The optimization problem was solved via an alternating projection-onto-sets scheme with calibration consistency, data-fidelity, joint  and TV projections. Convergence
was assumed when the percentage difference in MSE between images reconstructed in successive iterations fell below 20% in consecutive iterations. Calibration
consistency was enforced using the tensor interpolation kernel . Data fidelity was maintained by restoring acquired data. Proximal mapping was used to perform both 
and TV projections in the following form:

where  is the input (e.g., wavelet coeff. for , image coeff. for TV),  is the auxiliary variable, and  is the -norm operator or TV function. Here we propose to solve
Eq.2 by identifying the closest vector . This solution is equivalent to projection of the vector  onto the epigraph set (ES) 

 defined as :

Thus, regularization weight selection is transformed to the selection of a scale parameter  for the ES . Recent studies have shown
that the scaled ES formulation is remarkably robust against deviations in . The optimal  was determined separately for  and TV epigraphs using training data from a
single reserved subject.

Demonstrations were performed based on brain phantom data simulated with a phase-cycled bSSFP sequence, and in-vivo brain data acquired with phase-cycled bSSFP,
T1-weighted MP-RAGE, and time-of-flight (ToF) sequences. The following undersampling factors were examined: R=2, 4, 6 for bSSFP, R = 2, 4 for T1-weighted and ToF
acquisitions. Reconstructions were obtained using PESCaT and SPE methods. Reconstructions were compared against fully sampled reference images to measure MSE
and peak SNR (PSNR) metrics. To demonstrate the improvement in convergence behavior with PESCaT, the evolution of MSE between the reconstructed image at each
iteration and the fully-sampled reference was measured.

Results
Fig.1 shows reconstructions and error maps for the phantom dataset. Fig.2 shows the reconstructions for in-vivo datasets. In both cases, PESCaT achieves superior tissue
depiction with lower aliasing artifacts compared to SPE. These observations are supported by the PSNR measurements listed in Tables 1 and 2. On average, PESCaT
improves the PSNR by 1.29±0.29dB in the phantom dataset and by 1.27±0.56dB, 2.29±0.61dB, and 1.38±0.54dB in the in-vivo bSSFP, T1-weighted, and ToF datasets
(mean±std. across five cross-sections, average over all R).

Fig.3 shows the convergence behavior of PESCaT versus SPE for in-vivo datasets. Compared to SPE, PESCaT converges in a notably lower number of iterations
consistently across all datasets. Whereas SPE converges in 42.9±8.0 iterations each lasting 20.1±6.5s, PESCaT converges in only 14.2±3.4 iterations each taking 9.2±2.4s
(mean±std. across datasets, average over five cross-sections and all R). Overall, PESCaT enables a 7-9 fold faster reconstruction compared to SPE.

Conclusion
In this study, we proposed a self-tuning approach that automatically tunes regularization weights for the  and TV penalties by relying on simple geometric projections.
The proposed method yielded significant gains in reconstruction time over a common self-tuning approach based on line-searches, while enabling further improved image
quality. Therefore, PESCaT is a flexible and rapid framework for self-tuning CS reconstructions.
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Figure 1. Phase-cycled bSSFP acquisitions were simulated
for =45, TR/TE = 5/2.5ms, a fieldmap of 0±62Hz
(mean±std) with N=6 phase-cycles for R= 6. (a)

Reconstructions with PESCaT, SPE, SPE with number of
iterations equal to PESCaT (Early stop) and the fully sampled
reference image are shown. White boxes display zoomed-in
version of the images. (b) Squared-error maps with respect
to the fully-sampled reference images are shown for R=6.

PESCaT achieves visibly reduced errors.

Peak signal-to-noise ratio (PSNR) measured in phantom
reconstructions. PSNR is reported for each method as
mean±std across five cross-sections of the phantom.

PESCaT improves PSNR by 1.29±0.29dB compared to the
SPE method (mean±std. across five cross-sections, average

for R=2, 4, 6).

Figure 2. In vivo phase-cycled bSSFP (R=6), T1-weighted
(R=4), and ToF (R=4) acquisitions of the brain were

reconstructed using PESCaT and SPE. White boxes display
a zoomed-in version of the images. For bSSFP images, the

two methods both yield high-quality reconstructions. For T1-
weighted and ToF images, PESCaT achieves visibly

improved tissue depiction compared to SPE.

PSNR measured in reconstructed phase-cycled bSSFP, T1-
weighted, and ToF images of the brain. PSNR is reported as

mean±std across five cross sections. On average across
tested R, PESCaT improves PSNR by 1.27±0.56dB for

bSSFP, by 2.29±0.61dB for T1-weighted, and by
1.38±0.54dB for ToF images.

Figure 3. Reconstructions were performed on a single cross-
section using PESCaT (solid lines) and SPE (dashed lines)

for (a) bSSFP, (b) T1-weighted, and (c) ToF acquisitions.
MSE between the fully-sampled reference and reconstructed
images at each iteration is plotted till convergence. R=2 (left

column), 4 (middle column), and 6 (right column). The
iteration at which PESCaT converges is indicated by a

vertical dashed line. PESCaT converges faster than SPE in
all cases.
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