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Synopsis
Two frameworks to recover missing data in accelerated MRI are reconstruction of undersampled acquisitions and synthesis of missing acquisitions. In
reconstruction, performance diminishes towards higher acceleration factors and in synthesis, lack of evidence regarding the target contrast can lead to
artefactual sensitivity or insensitivity to image features. To address these issues, we propose an approach that synergistically performs reconstruction and
synthesis of multi-contrast MRI using generative adversarial networks. Demonstrations on brain MRI datasets from healthy subjects and patients indicate that
the proposed method preserves intermediate spatial frequency details and prevents artefactual feature synthesis or feature loss as compared to previous state-
of-the-art methods.

Introduction
A common approach to accelerate MRI is to reconstruct undersampled acquisitions . Yet, reconstruction performance diminishes towards higher acceleration factors
(Fig. 1a). An alternative framework to recover missing data is synthesis , where a set of missing contrasts is predicted based on a set of acquired contrasts of the same
anatomy. However, lack of evidence about the missing contrasts can either lead to synthesis of artificial features or insensitivity to features (Fig. 1a). To address the issues
with these two mainstream frameworks, we propose a new approach that synergistically performs reconstruction and synthesis to enable reliable recovery in accelerated
MRI (Fig. 1b).

Methods
The proposed approach was implemented using generative adversarial networks (GANs) . A GAN consists of a generator and a discriminator. Given lightly undersampled
acquisitions of source contrasts and highly undersampled acquisitions of target contrasts, the generator learns to recover high quality target-contrast images. Meanwhile,
the discriminator learns to discriminate between the images recovered by the generator and real images. The generator  and discriminator  are trained using an
adversarial loss function ( ):

where  and  are the parameters of  and  respectively,  represents the MR images aggregated across  contrasts  in the training dataset, 
represents the heavily undersampled acquisitions aggregated across  target contrasts , and  represents the lightly undersampled acquisitions
aggregated across  source contrasts .  is trained to minimize ( ), and  is trained to maximize ( ). To ensure reliable
recovery, a pixel-wise loss ( ) was also incorporated between the generated and reference images to train the generator:

The generator consisted of 3 convolutional layers-9 Resnet blocks-3 convolutional layers, and the discriminator consisted of 4 convolution layers.

We demonstrated the proposed approach on two public datasets. In the IXI dataset, 39 healthy subjects’ T , T - and PD-weighted images were analyzed (28 for training, 2
for validation, 9 for testing; 100 cross-sections per subject). In the BRATS dataset, 45 glioma patients’ T - and T -weighted images were analyzed (35 for training, 10 for
testing; 100 cross-sections per subject). Optimum number of epochs and relative weightings of the loss functions were selected by performing cross-validation on the IXI
dataset, and same set of parameters were used for the BRATS dataset. Adam optimizer was used with parameters =0.5, =0.999, and dropout regularization was
used with a dropout rate of 0.5.

We compared the proposed rsGAN method against two architectures: a reconstruction network (rGAN) that recovers target-contrast images based on undersampled
acquisitions of the target contrast, and a synthesis network (sGAN) that synthesizes target-contrast images based on fully sampled source-contrast images.

Results
Table I lists peak SNR (PSNR) values for recovered T - and PD-weighted images across the test subjects in the IXI dataset. T -weighted images were taken as source
contrast (R =1x, 2x, 5x undersampled), and T - and PD-weighted images were taken as target contrasts (R=10x, 20x, 30x, 40x, 50x). In T recovery, on average, rsGAN
(R =1x) achieves 2.84±1.01 dB higher PSNR than rGAN, and 2.88±1.69 dB higher PSNR than sGAN. In PD recovery, rsGAN (R =1x) achieves 2.22±0.58 dB higher PSNR
than rGAN, and 2.23±1.63 dB higher PSNR than sGAN.

Table II lists PSNR values for recovered T - and T -weighted images across the test subjects in the BRATS dataset. T - or T -weighted images were taken as source
contrasts (R=1x), and T - or T -weighted images were taken as target contrasts (R=10x, 20x, 30x, 40x, 50x). In T recovery, rsGAN achieves 1.12±0.87 dB higher PSNR
than rGAN, and 6.14±1.87 higher PSNR than sGAN. In T recovery, rsGAN achieves 1.78±0.84 dB higher PSNR than rGAN, and 5.83±1.71 dB higher PSNR than sGAN.

Representative T - and PD-weighted images in IXI recovered by sGAN, rGAN, and rsGAN are shown in Fig. 2. Representative T - and T -weighted images in BRATS
recovered by sGAN, rGAN, and rsGAN are shown in Fig. 3. rGAN suffers from loss of intermediate spatial frequency content due to lack of evidence in the target contrast,
and sGAN suffers from synthesis of artificial pathology or failure to synthesize existing pathology. On the other hand, rsGAN enables reliable recovery of the target
contrasts by relying on information from both source and target contrasts.

Discussion
Here, we proposed a new approach that performs synergistic reconstruction and synthesis to accelerate multi-contrast MRI. The proposed method preserves intermediate
spatial frequency details by relying on the lightly undersampled source contrasts. Meanwhile, it prevents feature loss or synthesis of artificial features by relying on heavily
undersampled acquisitions of the target contrast.

Conclusion
The proposed approach enables reliable recovery of missing data in variably undersampled multi-contrast MRI acquisitions, by effectively combining information from
source and target contrasts.
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Figure 1 - (a) In reconstruction, performance diminishes
towards higher acceleration factors; and in synthesis, lack of
evidence regarding the target contrast can lead to artefactual
sensitivity or insensitivity to image features. (b) The proposed

approach synergistically performs reconstruction and
synthesis using generative adversarial networks (GAN). A

GAN consists of a generator and a discriminator. The
generator takes lightly undersampled acquisitions of the

source contrasts and highly undersampled acquisitions of
the target contrasts as inputs and learns to recover high

quality target-contrast images. Meanwhile, the discriminator
learns to discriminate between the images synthesized by

the generator and real ones.

Figure 2 - Representative T - and PD-weighted images in
healthy subjects (IXI dataset) recovered using zero-filled

reconstruction (ZF), synthesis network (sGAN),
reconstruction network (rGAN), and joint reconstruction-

synthesis network (rsGAN). Source contrast (T -weighted)
was lightly undersampled (R =2) and target contrasts (T -
and PD-weighted) were highly undersampled (R=30x). (a)
Recovered T - weighted images along with the reference
image. (b) Recovered PD-weighted images along with the

reference image. Sample regions with improved recovery in
rsGAN are marked with arrows.

Figure 3 - Representative T - and T -weighted images in the
Glioma patients (BRATS dataset) recovered using zero-filled

reconstruction (ZF), synthesis network (sGAN),
reconstruction network (rGAN), and joint reconstruction-
synthesis network (rsGAN). Source contrast (T - or T -

weighted) was fully sampled and target contrasts (T - and
PD-weighted) were highly undersampled (R=50x). (a)

Recovered T -weighted images along with the source and
reference images. (b) Recovered T -weighted images along
with the source and reference images. Sample regions with

improved recovery in rsGAN are marked with arrows.

Table I - Quality of images recovered in the IXI dataset. T -
weighted acquisitions (R =1x, 2x, 5x) were taken as the

source contrast, and T - and PD-weighted acquisitions were
taken as the target contrasts (R=10x, 20x, 30x, 40x, 50x).
PSNR (mean±std) values for T - and PD-weighted images

across the test subjects are listed for sGAN, rGAN, and
rsGAN. The highest PSNR values in each row are marked in

bold font (p<0.01; Wilcoxon-signed rank test).

Table II – Quality of recovered images in the BRATS dataset.
PSNR values (mean±std) across the test subjects are listed

for sGAN, rGAN, and rsGAN. T - or T -weighted acquisitions
were taken as the source contrast (R=1x), and T - or T -
weighted acquisitions were taken as the target contrast
(R=10x, 20x, 30x, 40x, 50x). The highest PSNR values in

each row are marked in bold font (p<0.01).
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