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Abstract—Multi-contrast MRI acquisitions of an anatomy
enrich the magnitude of information available for diagnosis. Yet,
excessive scan times associated with additional contrasts may
be a limiting factor. Two mainstream frameworks for enhanced
scan efficiency are reconstruction of undersampled acquisitions
and synthesis of missing acquisitions. Recently, deep learning
methods have enabled significant performance improvements
in both frameworks. Yet, reconstruction performance decreases
towards higher acceleration factors with diminished sampling
density at high-spatial-frequencies, whereas synthesis can mani-
fest artefactual sensitivity or insensitivity to image features due
to the absence of data samples from the target contrast. Here we
propose a new approach for synergistic recovery of undersampled
multi-contrast acquisitions based on conditional generative adver-
sarial networks. The proposed method mitigates the limitations
of pure learning-based reconstruction or synthesis by utilizing
three priors: shared high-frequency prior available in the source
contrast to preserve high-spatial-frequency details, low-frequency
prior available in the undersampled target contrast to prevent
feature leakage/loss, and perceptual prior to improve recovery of
high-level features. Demonstrations on brain MRI datasets from
healthy subjects and patients indicate the superior performance
of the proposed method compared to pure reconstruction and
synthesis methods. The proposed method can help improve the
quality and scan efficiency of multi-contrast MRI exams.

Index Terms—Generative Adversarial Network (GAN), Syn-
thesis, Reconstruction, Multi Contrast, Magnetic Resonance
Imaging (MRI), Prior.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a preferred
modality for assessment of soft tissues due to diversity

of contrasts that it can provide. A typical MRI protocol
comprises a set of pulse sequences that capture images of
the same anatomy under different contrasts, with the aim to
enhance diagnostic information. For instance, in neuroimaging
protocols, T1-weighted images are useful for delineation of
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gray and white matter, whereas T2-weighted images are more
useful for delineation of fluids and fat. Although acquisition of
multiple distinct contrasts is desirable, it may not be feasible
due to scan time limitations or uncooperative patients. Thus,
methods for accelerating MRI acquisitions without compro-
mising image quality are of great interest for multiple-contrast
applications.

The predominant approach for accelerated MRI relies on
undersampled k-space acquisitions for scan time reduction,
and on reconstruction algorithms for recovery of missing sam-
ples based on the collected evidence (i.e., acquired samples)
[1]–[5]. Given the compressible nature of MR images, the
state-of-the-art approach is sparse recovery [3], [4], which
employs variable-density random undersampling in k-space to
capture most of the energy in the MR images while ensuring
low coherence of aliasing artifacts. The inverse problem of
image reconstruction from sub-Nyquist sampled data is then
solved via regularization from known transform domains [3],
[4], learned transform domains [6] or end-to-end deep neural
networks [7]–[22]. Despite the promise of deep models for
image reconstruction, the evidence collected on the target
MR image diminishes towards high acceleration factors due
to undersampling. In turn, this significantly degrades the
reconstruction performance, and causes loss in particularly
high-spatial-resolution image features that may be relevant for
diagnosis.

A fundamentally different approach for accelerated MRI
is to perform fully-sampled acquisitions of a subset of the
desired contrasts (i.e., source contrasts), and then to synthesize
missing contrasts (i.e., target contrasts). This approach requires
an intensity-based mapping model estimated using a collection
of image pairs in both source and target contrast [23]–[50]. The
model can be based on sparse linear mapping between source
and target patches [32], or deep neural networks for enhanced
accuracy [28], [34]–[36], [39]–[50]. Although deep models
for synthesis are promising, local inaccuracies may occur in
synthesized images when the source contrast is less sensitive to
differences in relaxation parameters of two tissues compared to
the target contrast, or vice versa. For instance, inflammation
can be more clearly delineated from normal tissues in T2-
weighted as opposed to T1-weighted images. In such cases,
synthesized images might contain artificial pathology or fail
to depict existing pathology.

Here, we propose a new approach for synergistic re-
covery of undersampled multi-contrast MRI acquisitions by
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Fig. 1. The proposed rsGAN method synergistically recovers undersampled
multi-contrast MRI acquisitions by complementarily using three priors: shared
high-frequency priors available in fully-sampled or lightly undersampled
acquisitions of one or more source contrasts to preserve high-spatial-frequency
details, low-frequency priors available in highly undersampled acquisitions of
one or more target contrasts to prevent feature leakage/loss, and a perceptual
prior to improve recovery of high-level features. The input-to-output mapping
is implemented using a conditional adversarial network with a generator and
a discriminator. The generator learns to recover realistic high-quality target-
contrast images by minimizing a pixel-wise, a perceptual and an adversarial
loss function. The discriminator learns to discriminate between synthetic
and real pairs of multi-contrast images by maximizing the adversarial loss
function.

complementarily using reconstruction and synthesis models.
The reconstruction branch takes as a prior the low-spatial-
frequency information available in the collected evidence for
the target contrast, whereas the synthesis branch takes as
a prior the high-spatial-frequency information available in
the fully sampled or lightly undersampled source contrast.
These low-level spatial-frequency priors are complemented
with a perceptual prior that improves recovery of higher-
level image features [51]. The input-to-output mapping is
implemented using conditional generative adversarial networks
(GAN), which were recently shown to outperform traditional
deep network models for image reconstruction [7]–[9], [14]
and synthesis tasks [39], [40]. The proposed reconstructing-
synthesizing GAN (rsGAN) contains a generator for esti-
mating the target-contrast image given heavily undersampled
target-contrast evidence and either fully sampled or lightly
undersampled source-contrast image; and a discriminator to
ensure that recovered images are as realistic as possible [52].
Low-spatial-frequencies are densely sampled in both target and
source acquisitions, but reconstructions of the target contrast
will inherently focus on low-frequency information in target
acquisitions. Because the heavily undersampled target contrast
misses high-frequency samples at large, the source contrast
serves as the primary basis of high-frequency information. The
proposed rsGAN model learns to fuse this multitude of input
information in a data-driven manner.

Deep neural networks were previously proposed for recov-
ery of multi-contrast MR acquisitions where each acquisition
was accelerated at an identical rate [53]–[55]. Despite im-
proved recovery compared to isolated reconstruction of indi-
vidual contrasts, joint reconstruction may still suffer from loss
of high-spatial-frequency information towards higher acceler-
ation factors. Deep neural networks were also proposed for
enhanced recovery of target-contrast images by incorporating
structural information from fully sampled images of a separate

contrast [56]–[58]. Compared to [56]–[58] that employ loss
terms based on mean square/absolute errors or structural sim-
ilarity, rsGAN leverages an adversarial loss that demonstrated
improved capture of high-spatial-frequency information [39].
A recent, independent study proposed a GAN model for super-
resolution in a target contrast acquisition via the aid of fully-
sampled images of a source contrast [59]. There are several
technical differences between rsGAN and the model in [59].
In [59] sources have to be fully sampled, whereas rsGAN also
enables light undersampling of source contrasts. For improved
recovery, rsGAN further includes a perceptual prior. Lastly, the
proposed rsGAN architecture can handle multi-coil complex
MRI datasets, and enable reliable recovery at acceleration
factors up to 50.

We demonstrated the proposed approach on several
datasets: two public datasets containing normal subjects, a
public dataset containing patients with high- or low-grade
glioma, and a multi-coil dataset containing normal subjects.
To comparatively evaluate the proposed method, following
competing methods were considered: a reconstructing
network (rGAN) that recovers the target-contrast image given
undersampled images of the targets contrasts accelerated at
identical rates, a reconstructing network (jGAN) that recovers
the target-contrast image given undersampled images of
the both source and target contrasts accelerated at identical
rates, a synthesizing network (sGAN) that synthesizes the
target-contrast image given fully sampled images of the
source contrast, a joint super resolution reconstructing
network (sr-sGAN) [59] that recovers the target-contrast
image given undersampled images of the target contrasts and
fully sampled images of the source contrast, and a variant
of rsGAN deprived of the perceptual prior (rsGAN-). Our
results indicate that rsGAN yields enhanced performance
compared to the competing methods. In particular, rsGAN
enables higher acceleration factors compared to rGAN and
jGAN since it more reliably recovers high-spatial-frequency
information. Compared to sGAN, rsGAN achieves improved
reliability against artificial feature loss or leakage since it
uses collected evidence from the target contrast to prevent
hallucination. Compared to sr-sGAN, rsGAN achieves
enhanced recovery at low to intermediate acceleration factors
(up to 20x). Compared to rsGAN-, rsGAN improves reliability
of high-level features. Overall, the proposed approach can
successfully recover MR images of at acceleration factors
up to 50x in the target contrasts, enabling a significant
improvement in multi-contrast MRI.

Contributions
1) To our knowledge, this is the first GAN-based architec-

ture that simultaneously leverages low-spatial-frequency,
high-spatial-frequency and perceptual priors to acceler-
ate multi-contrast MRI acquisitions.

2) The proposed approach can enable high acceleration
factors up to 50x by incorporating information from both
source and target contrasts.

3) The proposed approach can successfully recover
pathologies that are either missing in the source contrast
or are not clearly visible in the undersampled acquisi-
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tions of the target contrast.
4) The proposed approach can jointly reconstruct and syn-

thesize the target contrast even when the source contrasts
are moderately undersampled.

II. THEORY AND METHODS

A. Accelerated MRI
Two mainstream approaches that can be used to accelerate

MR acquisitions and enhance the diversity of acquired con-
trasts are reconstruction of a target contrast given randomly
undersampled acquisitions of the same contrast, and synthesis
of a target contrast based on fully-sampled acquisitions of
a distinct source contrast. Both approaches incorporate prior
information about image structure to improve the conditioning
of the inverse problem of recovering images of the target con-
trast. However, they differ fundamentally in the type of prior
information used. The problem formulations for reconstruction
and synthesis are overviewed below.

a) Reconstruction: In this case, MR acquisitions are
accelerated commonly via variable-density random undersam-
pling patterns:

Fum1 = y1a (1)

where Fu is the partial Fourier operator defined at the k-space
sampling locations, and m1 is the image of the target contrast,
y1a are the acquired k-space data. The reconstruction task is
then to recover the target image given the collected evidence
(i.e., acquired data). Note that the problem in Eq. 1 is ill-posed,
thus successful recovery requires additional prior information
about the image. In the CS framework, this prior information
reflects the sparsity of the image in a known transform domain
(i.e., wavelet, TV transforms). The prior can be incorporated
into the inverse problem as a regularization term:

m̂1 = arg min
m1

λ||Fum1 − y1a||2 +R(m1) (2)

where the first term enforces consistency of the reconstructed
and acquired data in k-space, R(m1) is the regularization term
reflecting the prior, and λ controls the relative weighting of
data consistency against the prior. R(m1) typically involves
the `0 or `1-norm of transform coefficients.

Recent studies have proposed neural-network methods to
adaptively learn both nonlinear transform domains directly
from MRI data and how to recover images from these domains.
In the training stage, a large dataset of pairs of undersampled
and fully-sampled acquisitions are leveraged to learn the
network-based solution to the inverse problem:

Lrec(θ) = Emu
1t,m1t ||G(mu

1t; θ)−m1t||p (3)

where mu
1t and m1t represent undersampled and fully-sampled

training images, G(mu
1t; θ) is the reconstructed output of the

neural network based on network parameters θ, and ||.||p
denotes `p-norm (where p is typically 1 or 2). Once the
network parameters that minimize the objective in Eq. 3 have
been learned, the following optimization problem can be cast
to obtain reconstructions of undersampled acquisitions:

m̂1 = arg min
m1

λ||Fum1 − y1a||2 + ||G(mu
1 ; θ∗)−m1||2

(4)

where mu
1 is the undersampled image, G(mu

1 ; θ∗) is the
reconstruction by the trained network with parameters θ∗,
and m̂1 is final recovered image. In Eq. 4, the first term
again enforces consistency of reconstructed and acquired data.
The second term is analogous to R(m1) in Eq. 2, and it
enforces consistency of the recovered image to the network
reconstruction.

b) Synthesis: In the synthesis case, fully-sampled images
of the source contrast are assumed to be available. The task
is then to recover target-contrast images (m1) given source-
contrast images (m2) of the same anatomy. A learning-based
procedure is used to estimate a mapping between the source
and target contrast images. In the training stage, a large
dataset of pairs of fully-sampled images from the source
and target contrasts are used (m2t,m1t). In the CS-based
synthesis framework, patch-based dictionaries (Φ2,Φ1) are
formed for both source and target contrasts using m2t and m1t.
These dictionaries are analogous to the sparsifying transform
domains used in CS reconstructions. The aim is to express
each patch in the source contrast images m2 as a sparse linear
combination of transform coefficients of the corresponding
dictionary atoms:

α(j) = arg min
α(j)

||m2(j)− Φ2.α(j)||2 + ||α(j)||1 (5)

where α(j) is the learned combination coefficients for the jth
patch, m2(j) denotes the jth patch in the source contrast, and
Φ2 denotes the dictionary formed using patches from m2t. The
first term ensures consistency of the synthesized patch to the
true patch. The second term enforces sparsity of the vector of
combination coefficients. Once the combination is learned, it
can be used to synthesize target contrast images:

m̂1(j) = Φ1.α(j) (6)

where Φ1 denotes the dictionary formed using patches from
m1t, and m̂1(j) is the jth patch of the final synthesized image.

Recent studies have proposed neural-network methods to
directly learn an adaptive, non-linear mapping from the source
contrast to the target contrast. In the training stage, network
parameters are optimized based on a loss function that reflects
the error between the network output and the true target image:

Lsynth(θ) = Em1t,m2t
||G(m2t; θ)−m1t||p (7)

where m1t and m2t represent pairs of source and target
images, and G(m2t; θ) is the mapping from source to target
contrast characterized by parameters θ. Once the network
parameters that minimize the objective in Eq. 7 are learned,
the network output can be directly calculated to obtain the
synthesis results:

m̂1 = G(m2; θ∗) (8)

where m̂1 is the prediction using the mapping G(m2; θ∗) with
parameters θ∗. Unlike the reconstruction task, here there is
no evidence that has been collected about the target contrast.
Therefore, no optimization procedures are needed for synthesis
in the testing stage.
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B. Joint Reconstruction-Synthesis via Conditional GANs

In the reconstruction task, the inverse problem solution uses
undersampled acquisitions of the target contrast as evidence,
and intrinsic image properties such as sparsity as prior. As
the acceleration factor grows, evidence becomes scarce par-
ticularly towards high spatial frequencies that are sparsely
covered by variable-density patterns. This in turn elevates the
degree of aliasing artifacts; and if heavier weighting is given
to the prior as a remedy, important features may be lost in
the recovered images. Meanwhile, in the synthesis task, the
inverse problem solution uses fully-sampled acquisitions of
a distinct source contrast of the same anatomy as a prior.
When the source and target contrasts exhibit similar levels
of sensitivity to differences in tissue parameters, this prior can
enable successful solution of the inverse problem. However,
when the source and target show differential sensitivity, then
features that are not supposed to be in the target may leak
from the source onto the synthesized image, or features that
must be present in the target may be missed.

To address the limitations of pure reconstruction or syn-
thesis, we proposed to synergistically combine the two ap-
proaches with the aim to enhance recovery of multi-contrast
MRI images. As such, the proposed approach consists of
two branches: (1) A reconstruction branch that aggregates
information from the target contrasts in the form of magnitude
and phase images. (2) A synthesis branch that aggregates
information from the source contrasts in the form of magnitude
images.

Given k target contrasts and n−k source contrasts, the joint
recovery problem can be formulated as:

m̂1,2,3,...,n = arg min
m1,2,...,n

λ
k∑
i=1

||Fumhu
i − yia||2+

λ
n∑

j=k+1

||Fumlu
j − yja||2+

R(mhu
1 , . . . ,mhu

k ,mlu
k+1, . . . ,m

lu
n ) (9)

where R(mhu
1 , . . . ,mhu

k ,mlu
k+1, . . . ,m

lu
n ) is a regularization

term based on prior information, mhu
i is the ith contrast that

is heavily undersampled (i.e., target contrast), and mlu
j is jth

contrast that is lightly undersampled (i.e., source contrast), and
yia denotes the acquired data for the ith contrast. We recast
Eq. 9 using a neural-network based formulation:

m̂1,2,3,...,n = arg min
m1,2,...,n

λ
k∑
i=1

||Fumhu
i − yia||2+

λ
n∑

j=k+1

||Fumlu
j − yja||2+

n∑
l=1

||G(mhu
1 , . . . ,mhu

k ,mlu
k+1, . . . ,m

lu
n ; θ∗)[l]−ml||2 (10)

Here, multiple separate channels for network output are con-
sidered since multiple contrast images can be recovered simul-
taneously. In Eq. 10, G(mhu

1 , . . . ,mhu
k ,mlu

k+1, . . . ,m
lu
n ; θ∗)[l]

denotes the lth channel of the network output, among a total of

n channels for the entire set of contrasts. The first two terms
respectively enforce the consistency of reconstructed data to
acquired data in the target and source contrasts. The last term
enforces consistency of the network outputs to the recovered
images. Solution of Eq. 10 yields estimates of the images for
each contrast separately as:

yir(k) =



F{G(mhu
1 , . . . ,mhu

k ,

mlu
k+1, . . . ,m

lu
n ; θ∗)[i]}(k)+

λyia(k)

1 + λ
if k ∈ Ω

F{G(mhu
1 , . . . ,mhu

k ,

mlu
k+1, . . . ,m

lu
n ; θ∗)[i]}(k)

otherwise

m̂i = F−1{yir} (11)

where yir denotes the k-space representation of the image for
the ith contrast, Ω is the set of acquired k-space samples, F is
the Fourier transform operator, and F−1 is the inverse Fourier
transform operator. The solution stated above performs two
subsequent projections on the input images. The first projec-
tion takes undersampled acquisitions to generate the network
predictions. The second projection enforces data consistency
between data sampled that were originally acquired and those
that are predicted by the network.

Based on the recent progress by generative adversarial
networks in MR image synthesis and reconstruction tasks, we
chose to build the joint recovery network using a conditional
GAN architecture. Our network contains two subnetworks:
a generator and a discriminator. The task of the generator
is to learn a mapping from undersampled acquisitions onto
fully-sampled acquisitions of source and target images. Both
synthesis and reconstruction branches are provided to the
generator part of the network as separate input channels.
During the training, the network learns to adaptively fuse this
information in a data-driven way. Meanwhile, the task of the
discriminator is to differentiate between the images predicted
by the generator and the actual images. As such, an adversarial
loss function is typically used to train both subnetworks. Here
for stabilized training, we used adversarial loss as in LSGAN
[60]:

LcondAdv(θD, θG) = −Emt [(D(mt; θD)− 1)2]

−Emhu
t ,mlu

t
[D(G(mhu

t ,mlu
t ; θG))2] (12)

where mt represents the MR images aggregated across n
contrasts (m1,m2, . . . ,mn) in the training dataset, mhu

t

represents the heavily undersampled acquisitions aggregated
across k target contrasts (m1,m2, . . . ,mk), mlu

t represents
the lightly undersampled acquisitions aggregated across n−k
source contrasts (mk+1,mk+2, . . . ,mn), G is the generator
with parameters θG, D is the discriminator with parameters
θG, and LAdv(θD, θG) is the adversarial loss function. To
ensure reliable recovery in each channel, a pixel-wise loss
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function was incorporated to the generator:

LL1(θG) = Emt,mhu
t ,mlu

t

[
||G(mt,m

hu
t ,mlu

t ; θG)−mt||1
]

(13)

Recent studies on MRI reconstruction and synthesis suggest
that incorporating an additional prior in the form of a percep-
tual loss can further enhance the image quality [39], [40].
The perceptual loss relies on high-level features extracted via
networks pretrained on natural images for more general tasks.
Following [51], we extracted feature maps right before the
second max-pooling layer of the VGG16 model trained on
the ImageNet dataset [61] for object classification. The loss
function can be expressed as:

Lperc(θG) = Emt,mhu
t ,mlu

t

[
||V (G(mt,m

hu
t ,mlu

t ; θG))

−V (mt)||1
]
(14)

where V (.) represents the features extracted via VGG16.
The adversarial, pixel-wise and perceptual losses are finally
combined to train the proposed reconstructing-synthesizing
GAN (rsGAN) model:

LrsGAN (θD, θG) = λpLL1(θG)+

λpercLperc(θG)+

LcondAdv(θD, θG) (15)

where λp and λperc are the relative weightings of the pixel-
wise and perceptual loss functions.

C. Competing Methods

To evaluate the effectiveness of rsGAN, we compared it
against other GAN architectures. A GAN trained to only
perform synthesis of the target-contrast images based on
the respective source-contrast images. Source-contrast images
were taken to be fully-sampled, high-quality images. We will
refer to this network as the synthesizing GAN (sGAN). A
GAN trained to only perform reconstruction of the target-
contrast images based on undersampled acquisitions of all
target contrasts accelerated at identical rates. We will refer
to this network as the reconstructing GAN (rGAN). A GAN
trained to only perform reconstruction of the target-contrast
images based on undersampled acquisitions of all source and
target contrasts accelerated at identical rates. We will refer to
this network as the joint reconstructing GAN (jGAN). In the
public datasets, rsGAN was also compared against a variant of
rsGAN deprived of the perceptual prior, referred to as rsGAN-,
and a GAN trained to only perform recovery of the target-
contrast images based on fully sampled acquisitions of source
contrasts and low-resolution acquisitions of target contrasts,
referred to as the super-resolution synthesis GAN (sr-sGAN).
Note that sGAN, jGAN, rGAN and sr-sGAN were also trained
using the perceptual prior.

D. MRI Datasets

We demonstrated the proposed approach on three different
public datasets and a multi-coil dataset containing multi-
contrast MRI images. The public datasets MIDAS [62] and
IXI (http://brain-development.org/ixi-dataset/) comprised im-
ages collected in healthy normals. BRATS (https://sites.google.
com/site/braintumorsegmentation/home/brats2015) comprised
images collected in patients with low-grade glioma (LGG) or
high-grade glioma (HGG). Relevant details about each dataset
are given below.

a) MIDAS Dataset: T1-weighted and T2-weighted im-
ages in the MIDAS dataset were considered. Data from 40
subjects were analyzed. The scan protocols were as follows:

1) T1-weighted images: 3D Gradient-Echo sequence,
repetition time (TR)=14ms, echo time (TE)=7.7ms,
flip angle=25◦, volume size=256×176×256, voxel
dimensions=1mm×1mm×1mm.

2) T2-weighted images: 2D Spin-Echo sequence, rep-
etition time (TR)=7730ms, echo time (TE)=80ms,
flip angle=180◦, volume size=256×192×256, voxel
dimensions=1mm×1mm×1mm.

b) IXI Dataset: T1-weighted, T2-weighted and PD-
weighted images in the IXI dataset were considered. Data from
40 subjects were analyzed.

The scan protocols were as follows:
1) T1-weighted images: repetition time

(TR)=9.813ms, echo time (TE)=4.603ms, flip
angle=8◦, volume size=256×256×150, voxel
dimensions=0.94mm×0.94mm×1.2mm.

2) T2-weighted images: repetition time (TR)=8178ms,
echo time (TE)=100ms, flip angle=90◦,
volume size=256×256×130, voxel dimensions=
0.94mm×0.94mm×1.2mm.

3) PD-weighted images: Repetition time
(TR)=8178ms, echo time (TE)=8ms, flip
angle=90◦, volume size=256×256×130, voxel
dimensions=0.94mm×0.94mm×1.2mm.

c) BRATS Dataset: T1-weighted, T2-weighted and
FLAIR images in the BRATS dataset were considered. Data
from 40 Glioma patients were analyzed. Since the data were
acquired in various different sites, no single scan protocol
existed. In BRATS, all contrasts were already pre-registered
and skull-stripped as publicly shared.

d) Multi-Coil MR Images: T1-weighted, T2-weighted
and PD-weighted brain images from 10 subjects were acquired
at Bilkent University. Images were acquired on a 3T Siemens
Tim Trio scanner (maximum gradient strength of 45mT/m and
slew rate of 200 T/m/s) using a 32-channel receive only coil.
The scan protocols were as follows:

1) T1-weighted images: 3D MP-RAGE sequence, rep-
etition time (TR)=2000ms, echo time (TE)=5.53ms,
flip angle=20◦, volume size=256×192×88, voxel
dimensions=1mm×1mm×2mm, acquisition time (TA)=
6:26.

2) T2-weighted images: 3D Spin-Echo sequence, rep-
etition time (TR)=1000ms, echo time (TE)=118ms,
flip angle=90◦, volume size=256×192×88, voxel
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dimensions=1mm×1mm×2mm, acquisition time (TA)=
17:39.

3) PD-weighted images: 3D Spin-Echo sequence, rep-
etition time (TR)=750ms, echo time (TE)=12ms,
flip angle=90◦, volume size=256×192×88, voxel
dimensions=1mm×1mm×2mm, acquisition time (TA)=
13:14.

In the public datasets, (25, 5, 10) subjects were used for
(training, validation, testing). In the IXI dataset, one test
subject was discarded due to poor registration quality. Within
each subject, around 100 central cross-sections that contained
brain tissues and that were relatively free of artifacts were
selected. Each model was trained using a batch size of 1. This
corresponds to nearly 2400-2600 iterations per epoch. In the
multi-coil dataset, (7, 1, 2) subjects were used for (training,
validation, testing). For each subject, around 155 central cross-
sections that contained brain tissues and that were relatively
free of artifacts were selected. Models were trained using a
batch size of 1. This corresponds to nearly 1085 iterations per
epoch.

E. Image Registration

Since the multi-contrast volumes in the MIDAS, IXI and
multi-coil datasets were unregistered, these images were reg-
istered before training and testing. For the MIDAS dataset,
T2-weighted images of each subject were registered onto T1-
weighted images of the same subject using a rigid transfor-
mation. Images were registered based on mutual information
loss. For the IXI dataset, T2- and PD-weighted images of
each subject were registered onto T1-weighted images of
each subject using an affine transformation. In the multi-coil
dataset, T2- and PD-weighted images of each subject were
registered onto T1-weighted images of each subject using a
rigid body transformation. Images were registered based on
mutual information loss. Registrations were carried out using
FSL [63], [64].

F. Undersampling Patterns

For heavily undersampled acquisitions of the target contrast,
we examined acceleration factors in a broad range (R= 5x,
10x, 20x, 30x, 40x, 50x; Fig. 2). For lightly undersampled
acquisitions of the source contrast, we examined acceleration
factors in a relatively limited range (R=1x, 2x, 3x). For
rsGAN and rGAN, variable-density undersampling was used
[3]. The undersampling patterns were generated using bi-
variate normal probability density functions. Covariance of the
density functions was separately adjusted for each value of
R. Fully-sampled images were Fourier transformed, and then
retrospectively sampled using the generated patterns. Distinct
random patterns were generated for each subject within each
dataset.

For proof of concept demonstration at high acceleration
rates, we simulated 2D undersampling in the transversal plane
for the public datasets. For multi-coil acquisitions, 2D under-
sampling was performed in the coronal plane on a 192x88 grid,
so a relative narrower range of accelerations were considered
(R=5x, 10x, 15x, 20x, 25x, 30x).

Fig. 2. Examples of undersampling patterns for acquisitions accelerated in a
broad range (R= 5x, 10x, 20x, 30x, 40x, 50x)

G. Model Training Procedures

All GAN-based models were trained using an identical set
of procedures. To train each conditional GAN, we adopted
the generator and discriminator from [51] and [65]. The gen-
erator consisted of the following convolutional layers (Conv)
connected in series: Conv (kernel-size=7, output-features=64,
stride=1, activation=ReLU), Conv (kernel-size=3, output-
features=64, stride=2, activation=ReLU), Conv (kernel-size=3,
output-features=256, stride=2, activation=ReLU), 9x resnet
blocks (kernel-size=3, output-features=256, stride=1, activa-
tion=ReLU), fractionally-strided Conv (kernel-size=3, output-
features=128, stride=2, activation=ReLU), fractionally-strided
Conv (kernel-size=3, output-features=64, stride=2, activa-
tion=ReLU), Conv (kernel-size=7, output-features=1, stride=1,
activation=none). The discriminator consisted of the following
convolutional layers (Conv) connected in series: Conv (kernel-
size=4, output-features=64, stride=2, activation=leakyReLU),
Conv (kernel-size=4, output-features=128, stride=2, activa-
tion=leakyReLU), Conv (kernel-size=4, output-features=256,
stride=2, activation=leakyReLU), Conv (kernel-size=4, output-
features=512, stride=1, activation=leakyReLU), Conv (kernel-
size=4, output-features=1, stride=1, activation=none).

Generator and discriminator networks were trained for 100
epochs using the Adam optimizer [66], with decay rates for
the first and second moment estimates set as 0.5 and 0.999.
For the generator, the learning rate was set as 0.0002 for the
initial 50 epochs and then linearly decayed to 0 during the
remaining epochs. For the discriminator, the learning rate was
set as 0.0001 for the first 50 epochs and then linearly decayed
to 0 during the remaining epochs. Dropout regularization was
used to enhance the generalizability of the network model,
with a dropout rate of 0.5. Instance normalization was applied
[67]. All model weights were randomly initialized based on a
normally-distributed variable with 0 mean and 0.02 standard
deviation.

The optimal weightings of pixel-wise loss (λp) and per-
ceptual loss (λperc) terms were determined via a cross-
validation procedure supplemented by visual inspection. Us-
ing the training data, separate models were obtained for λp
in [10 150] and λperc in [10 150]. Weight selection was
then performed by maximizing PSNR on the validation data.
Recovered validation images were also visually inspected.
When needed, selected weights were further fine-tuned to
prevent low-quality recovery due to artifacts. Following these
procedures, a common λp =100 value was chosen for all
datasets that yielded near-optimal results consistently across
datasets and acceleration factors. Note that our optimum λp
value closely matches weighting reported for conditional GAN
models in the literature [39], [65]. Meanwhile, a separate λperc
value was chosen for each dataset and for each acceleration
factor. Relative weighting of data consistency against the prior
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Fig. 3. The proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1- and T2-weighted images from the MIDAS
dataset. The acquisition for the source contrast was fully sampled, and the
acquisition for the target contrast was undersampled by R=5x, 10x, 20x,
30x, 40x, 50x. PNSR was measured between recovered and fully-sampled
reference target-contrast images. (a) PSNR (mean±standard error) across the
test subjects for rsGAN, rGAN, jGAN, and sGAN when T1 is the source
contrast and T2 is the target contrast. (b) PSNR (mean±standard error) when
T2 is the source contrast and T1 is the target contrast. The performance of
sGAN remains constant across R since it does not use any evidence from the
target-contrast acquisitions. As expected, the performance of rGAN, jGAN,
and rsGAN gradually decreases for higher values of R where the evidence
from the target contrast becomes scarce. However, rsGAN performs well even
at very high acceleration factors..

(λ) was set to infinity.
Note that although the public datasets used in this study

contain only coil combined magnitude images, the Fourier
reconstructions of undersampled acquisitions are complex val-
ued. Therefore, for each input contrast, two channels were des-
ignated to represent the magnitude and phase image compo-
nents. For each target contrast, separate networks were trained
to recover fully-sampled magnitude images. In the multi-coil
dataset, first GCC [68] was used to reduce computational
complexity by decreasing the number of coils from 32 to
5. For each input contrast, 5 channels were designated to
represent magnitude components. In practice, the comparative
performance of rsGAN models without and with phase de-
pends on the benefits of added phase information against the
disadvantages of fitting a more complex model. In the multi-
coil dataset with 5 virtual coils, adding phase information for
each individual contrast amounts to 5 extra input channels,
considerably expanding model complexity. Since we observed
that additional phase channels caused a slight decline in
performance, we preferred to use rsGAN models without phase
information in the multi-coil analyses of rsGAN. For each
target contrast, separate networks were trained to recover fully-
sampled coil-combined magnitude images. Reference coil-
combined images were obtained by using coil sensitivity maps
estimated via ESPIRiT [69].

To maximize model performance, a separate model was
trained for each unique collection of source and target con-
trasts, and acceleration factors. For generalizing the rsGAN
model to also handle light undersampling of the source con-
trast, a separate rGAN model was first trained to recover
undersampled source acquisitions at each acceleration factor.
In the testing phase, the reconstructed source contrast was then
fed to the rsGAN model.

For multi-coil data, rsGAN was first trained to recover a
coil-combined magnitude image for the target contrast from
undersampled multi-coil magnitude images for source and tar-
get contrasts. Second, a coil-combined complex image for the
target was obtained by adding onto the recovered magnitude

Fig. 4. T2-weighted images in the MIDAS dataset were recovered from
heavily undersampled acquisitions (R=10x, 20x, 30x, 40x, 50x). The acquisi-
tion for the source contrast (T1-weighted) was fully sampled. Target-contrast
images recovered by ZF (zero-filled Fourier reconstruction), sGAN, jGAN,
and rsGAN are shown with the fully-sampled reference image. As the value
of R increases the performance of jGAN degrades significantly. Meanwhile,
rsGAN maintains high-quality recovered images due to use of additional
information from the source contrast. Regions with enhanced recovery in
rsGAN are marked with arrows.

image the phase of the coil-combined undersampled images
of the target. Third, the coil-combined complex target image
was back-projected onto individual coils using coil sensitivity
maps. Data consistency was enforced on the resultant multi-
coil complex target data, and a coil-combined complex target
image was then obtained. As such, phase information in under-
sampled acquisitions was leveraged to enable data consistency
projections.

H. Experiments

1) Main Experiments: To evaluate the comparative perfor-
mance of the proposed approach, rsGAN, rGAN, jGAN, and
sGAN were individually trained and tested on multi-contrast
MRI datasets. Theoretically, as R approaches 1x, rsGAN,
rGAN and jGAN should show nearly identical performance
that is superior to sGAN since sGAN has no evidence collected
about the target contrast. As R goes to infinity, rsGAN and
sGAN should show nearly identical performance that is supe-
rior to rGAN, since no evidence from the target contrast will
be available to any of the networks. In intermediate R values,
we reasoned that rsGAN would outperform rGAN and jGAN
in terms of reliability in recovery of high-frequency informa-
tion since variable-density patterns suboptimally sample high
spatial frequencies in the target contrast. We also reasoned
that rsGAN would outperform sGAN especially when the
source and target contrasts showed differential sensitivity to
differences in tissue parameters. Based on these notions, we
measured the performance of all four methods across a broad
range of acceleration factors. To evaluate the effects of per-
ceptual prior and variable-density sampling patterns, rsGAN
was also compared against rsGAN- and sr-sGAN in the public
datasets. We reasoned that incorporation of the perceptual
prior should enhance performance. We also reasoned that as
R approaches 1, rsGAN should perform better than sr-sGAN
since rsGAN contains more high-spatial frequency information
from the target contrast. As R approaches infinity, rsGAN
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Fig. 5. T1-weighted images in the MIDAS dataset were recovered from
heavily undersampled acquisitions (R=10x, 20x, 30x, 40x, 50x). The acquisi-
tion for the source contrast (T2-weighted) was fully sampled. Target-contrast
images recovered by ZF, sGAN, jGAN, and rsGAN are shown with the fully-
sampled reference image. Regions with enhanced recovery in rsGAN are
marked with arrows.

should perform similar to sr-sGAN since the variable-density
sampling patterns in rsGAN approach the central sampling
patterns in sr-sGAN at these acceleration rates. In both MIDAS
and BRATS datasets, we considered two main scenarios. First,
T1-weighted acquisitions were taken as the source contrast
(R=1x), and T2-weighted acquisitions were taken as the target
contrast (R=5x, 10x, 20x, 30x, 40x, 50x). Second, T2-weighted
acquisitions were taken as the source (R=1x), and T1-weighted
acquisitions were taken as the target (R=5x, 10x, 20x, 30x,
40x, 50x).

Two distinct scenarios were examined in both IXI and multi-
coil datasets. First, T1-weighted acquisitions were taken as
the source contrast (R=1x), and both T2- and PD-weighted
acquisitions were taken as the target contrasts (R=5x, 10x,
20x, 30x, 40x, 50x in the IXI dataset, and R=5x, 10x, 15x,
20x, 25x, 30x in the multi-coil dataset). Since T2-and PD-
weighted acquisitions are typically performed using similar
sequences, the acceleration factors for these two contrasts were
always matched. Second, the source T1-weighted acquisitions
were lightly undersampled (R=2x, 3x), and T1-, T2-, and PD-
weighted images were jointly recovered. The overall scan
time for an accelerated multi-contrast protocol depends on the
distribution of R across contrasts, and individual scan times
for all contrasts. To systematically examine scan efficiency, we
measured recovery performance for jGAN and rsGAN with
the same overall scan time. Analyses were performed on the
in vivo multi-coil datasets for a fixed scan time of 250 sec,
where T1 was the source contrast and T2 and PD were the
target contrasts. For jGAN this corresponds to R=8.9x across
all contrasts, whereas for rsGAN this corresponds to RT1 =3x
for the source contrast and R=15x for target contrasts.

2) Control Experiments: Here, for more efficient model
training, we preferred to focus on cross-sections that contained
brain tissue. To rule out potential biases in model generaliz-
ability due to this selection, we conducted control experiments
where rGAN, jGAN and rsGAN were trained on all available
cross-sections in the IXI dataset without any selection (referred
to as rGANAll, jGANAll and rsGANAll). These models were
compared with rGAN, jGAN and rsGAN trained on the origi-

Fig. 6. Multi-contrast images in the MIDAS dataset were recovered, where the
source contrast was fully sampled and the target contrast was undersampled
at R=50x. Images were recovered using ZF, sGAN, jGAN and rsGAN.
(a) Recovered T2-weighted images are shown along with the fully-sampled
reference image and the source-contrast image. (b) Recovered T1-weighted
images are shown along with the fully-sampled reference image and the
source-contrast image. rsGAN yields visually accurate recovery of the target-
contrast image compared to sGAN and jGAN. Sample regions that are better
recovered by rsGAN are marked with arrows.

nally selected central cross-sections. Performance comparisons
were carried out on independent test sets containing all cross-
sections within subjects without any selection procedures.

In the public datasets containing coil-combined magnitude
images, phase is only introduced during retrospective under-
sampling of k-space data, and the phase values are often
small. Thus, in theory, an rsGAN model that receives as
inputs only magnitude images should perform similarly to one
that receives both magnitude and phase images. To test this
prediction, we conducted additional analyses in the BRATS
dataset where a variant of rsGAN model with only magni-
tude channels as inputs was trained, referred to as rsGANm.
rsGANm was then compared against rsGAN consisting of both
magnitude and phase channels as inputs. T1 was set as the
source contrast and T2 was set as the target contrast.

Here, rsGAN had different model complexity compared to
the competing methods (rGAN, jGAN and sGAN). To rule out
potential biases due to model complexity, we implemented
additional control experiments in the BRATS dataset with
rGAN, jGAN and sGAN models with matching complex-
ity to rsGAN. Complexity was balanced across models by
maintaining an identical number of input channels to the
generator. In these experiments, T1 was set as the source
contrast and T2 was set as the target contrast. Input to sGAN
consisted of magnitude images of fully sampled T1 contrast
concatenated with magnitude and phase images of undersam-
pled T1 contrast. Input to rGAN consisted of magnitude and
phase images of highly undersampled T2 contrast concatenated
with magnitude images of highly undersampled T2 contrast.
Input to jGAN consisted of magnitude and phase images of
highly undersampled T2 contrast concatenated with magnitude
images of highly undersampled T1 contrast. These models are
referred to as rGANMC, jGANMC and sGANMC. These models
were compared with rsGAN, and regular rGAN, jGAN and
sGAN.

In this study, rsGAN was mainly demonstrated for the
recovery of T1-, T2- ,and PD-weighted contrasts. Several diag-
nostic protocols also include FLAIR acquisitions. To examine
the ability of rsGAN to recover FLAIR acquisitions, we also
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TABLE I
QUALITY OF RECOVERED IMAGES IN THE MIDAS DATASET

rGAN jGAN rsGAN(T1 =1)
PSNR SSIM PSNR SSIM PSNR SSIM

R=5x
36.88 97.69 37.03 97.76 37.35† 97.96†

±0.13 ±0.10 ±0.11 ±0.10 ±0.12 ±0.10

R=10x
32.87 95.18 33.24 95.60 34.04† 96.30†

±0.14 ±0.20 ±0.12 ±0.19 ±0.13 ±0.19

R=20x
29.20 90.88 29.69 91.64 31.23† 93.97†

±0.15 ±0.34 ±0.15 ±0.33 ±0.17 ±0.30

R=30x
27.61 87.98 27.95 88.82 30.45† 93.25†

±0.15 ±0.42 ±0.14 ±0.40 ±0.16 ±0.33

R=40x
26.49 85.75 26.93 86.88 29.89† 92.76†

±0.14 ±0.47 ±0.17 ±0.49 ±0.17 ±0.35

R=50x
25.67 83.77 26.02 84.87 29.28† 92.09†

±0.17 ±0.53 ±0.16 ±0.52 ±0.21 ±0.41
sGAN

PSNR SSIM (%)
27.56±0.27 90.91± 0.48

PSNR and %SSIM values (mean±standard error) across the test subjects
are listed for sGAN, rGAN, jGAN, and rsGAN. T1-weighted acquisitions
were taken as the source contrast, and T2-weighted acquisitions were
taken as the target contrast. The highest PSNR and SSIM values in each
row are marked in bold font, and the significantly better performing
values (p<0.05) are marked with the ’†’ symbol.

trained models for recovery of FLAIR images in the BRATS
dataset. T1 was used as the source contrast, and FLAIR was
used as the target contrast.

To maximize performance for individual contrasts, here the
recovery of each target contrast was taken as a separate task.
When multi-target-contrast images were considered, a separate
rsGAN model was constructed to recover each target contrast.
To assess the benefits of this strategy, we conducted additional
experiments in the BRATS dataset where two distinct sets
of rsGAN models were constructed. The first set consisted
of the original rsGAN models (named rsGAN1) trained to
recover target contrasts individually (one model recovering T2
from undersampled T2 and fully-sampled T1 acquisitions, and
another model recovering FLAIR from undersampled FLAIR
and fully-sampled T1 acquisitions). The second set consisted
of a unified rsGAN model (named rsGAN2) trained to jointly

TABLE II
QUALITY OF RECOVERED IMAGES IN THE MIDAS DATASET

rGAN jGAN rsGAN(T2 =1)
PSNR SSIM PSNR SSIM PSNR SSIM

R=5x
32.41 94.11 32.35 94.33 32.17 94.53†

±0.31 ±0.29 ±0.31 ±0.30 ±0.39 ±0.31

R=10x
29.52 90.75 29.42 91.32 29.94† 92.23†

±0.33 ±0.40 ±0.31 ±0.41 ±0.41 ±0.45

R=20x
27.24 86.15 27.72 87.77 28.35† 90.03†

±0.31 ±0.50 ±0.26 ±0.52 ±0.39 ±0.52

R=30x
26.44 83.91 26.53 85.44 27.94† 89.28†

±0.25 ±0.60 ±0.18 ±0.55 ±0.36 ±0.56

R=40x
25.73 82.10 26.21 83.98 27.41† 88.66†

±0.16 ±0.66 ±0.21 ±0.65 ± 0.31 ±0.60

R=50x
25.03 80.52 25.41 82.43 27.05† 88.21†

±0.32 ±0.66 ±0.27 ±0.65 ±0.32 ±0.66
sGAN

PSNR SSIM (%)
25.57±0.27 85.94± 0.82

T2-weighted acquisitions were taken as the source contrast, and T1-
weighted acquisitions were taken as the target contrast.

TABLE III
QUALITY OF RECOVERED IMAGES IN THE BRATS DATASET

rGAN jGAN rsGAN(T1 =1)
PSNR SSIM PSNR SSIM PSNR SSIM

R=5x
35.54 98.58 36.21 98.69 36.15 98.77
±0.77 ±0.10 ±0.75 ±0.07 ±0.74 ±0.06

R=10x
32.61 97.34 32.81 97.49 33.43† 97.73†

±0.66 ±0.11 ±0.64 ±0.10 ±0.64 ±0.08

R=20x
30.47 95.38 31.17 95.79 31.54† 96.55†

±0.60 ±0.18 ±0.57 ±0.15 ±0.55 ±0.12

R=30x
29.58 93.91 29.87 94.38 30.97† 95.79†

±0.52 ±0.22 ±0.54 ±0.20 ±0.49 ±0.15

R=40x
28.84 92.85 28.94 93.34 30.00† 95.28†

±0.57 ±0.26 ±0.57 ±0.23 ±0.50 ±0.17

R=50x
28.12 91.81 28.35 92.39 30.09† 94.88†

±0.53 ±0.29 ±0.50 ±0.25 ±0.39 ±0.19
sGAN

PSNR SSIM (%)
24.78±0.48 91.69± 0.44

T1-weighted acquisitions were taken as the source contrast, and T2-
weighted acquisitions were taken as the target contrast.

recover T2 and FLAIR from undersampled T2 and FLAIR, and
fully-sampled T1 acquisitions. The two sets of models were
compared in terms of average performance in recovery of T2
and FLAIR images.

All network models and conventional reconstruction and
synthesis techniques were trained and tested on the same
instances of data and undersampling patterns. To quantitatively
assess the quality of recovered images, the fully-sampled
reference images were used. All images were first normalized
to the range [0 1]. Then, peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) were calculated
between the recovered and reference images. Statistical sig-
nificance of differences in PSNR and SSIM between methods
were assessed via a nonparametric Wilcoxon signed-rank test.
In the public datasets, the statistical significance tests were
performed across test subjects. In the multi-coil dataset, due
to limited number of test subjects, the statistical significance
tests were performed across cross-sections.

TABLE IV
QUALITY OF RECOVERED IMAGES IN THE BRATS DATASET

rGAN jGAN rsGAN(T2 =1)
PSNR SSIM PSNR SSIM PSNR SSIM

R=5x
35.93 98.71 36.20 98.78 36.46 98.86†

±0.57 ±0.08 ±0.62 ±0.09 ±0.60 ±0.10

R=10x
32.56 97.55 32.63 97.60 33.58† 97.96†

±0.51 ±0.14 ±0.58 ±0.17 ±0.58 ±0.16

R=20x
29.80 95.82 30.12 96.03 31.18† 96.82†

±0.51 ±0.19 ±0.54 ±0.20 ±0.51 ±0.22

R=30x
28.52 94.55 28.94 94.94 30.16† 96.29†

±0.49 ±0.19 ±0.48 ±0.20 ±0.55 ±0.25

R=40x
27.77 93.47 28.03 93.96 29.53† 95.86†

±0.49 ±0.19 ±0.52 ±0.21 ±0.61 ±0.29

R=50x
27.04 92.53 27.26 93.10 29.19† 95.58†

±0.46 ±0.21 ±0.56 ±0.22 ±0.61 ±0.30
sGAN

PSNR SSIM (%)
24.78±0.81 91.69± 0.44

T2-weighted acquisitions were taken as the source contrast, and T1-
weighted acquisitions were taken as the target contrast.
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Fig. 7. The proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1- and T2-weighted images from the BRATS
dataset. The acquisition for the source contrast was fully sampled, and the
acquisition for the target contrast was undersampled by R=5x, 10x, 20x,
30x, 40x, 50x. PNSR was measured between recovered and fully-sampled
reference target-contrast images. (a) PSNR (mean±standard error) across the
test subjects for rsGAN, rGAN, jGAN, and sGAN when T1 is the source
contrast and T2 is the target contrast. (b) PSNR (mean±standard error) when
T2 is the source contrast and T1 is the target contrast.

III. RESULTS

A. Main Experiments

1) Public Datasets: We first demonstrated the proposed
rsGAN method against rGAN, jGAN and sGAN on the
MIDAS dataset. We considered two separate models: a model
to recover T2-weighted images given T1-weighted images as
source contrast, and another to recover T1-weighted images
given T2-weighted images as source contrast. Tables I and II
list the respective PSNR and SSIM measurements for each
model, and Fig. 3 illustrates performance as a function of R.
T2- and T1-weighted images in the MIDAS dataset recovered
while R is varied from 10x to 50x are displayed in Figs. 4 and
5, respectively. Representative T2- and T1-weighted images
recovered with ZF, jGAN, sGAN and rsGAN at R=50x are
shown in Fig. 6. As expected, the similarity between rsGAN
and jGAN results increases towards R=10x, and that between
rsGAN and sGAN increases towards R=50x. Furthermore,
rsGAN recovers images of higher visual quality and acuity
than both competing methods, particularly at intermediate
R values. These results indicate that the incorporation of

Fig. 8. Multi-contrast images in the BRATS dataset were recovered, where the
source contrast was fully sampled and the target contrast was undersampled
at R=50x. Images were recovered using ZF, sGAN, jGAN and rsGAN. (a)
Recovered T2-weighted images along with the fully-sampled reference image
and the source-contrast image. (b) Recovered T1-weighted images along with
the fully-sampled reference image and the source-contrast image. rsGAN
yields visually superior images compared to sGAN and jGAN. Note that
sGAN suffers from either loss of features in the target contrast or synthesis
of artefactual features. Meanwhile, jGAN suffers from excessive loss of
high spatial frequency information. Sample regions that are more accurately
recovered by rsGAN are marked with arrows.

Fig. 9. The proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1-, T2- and PD-weighted images from the IXI
dataset. The acquisition for the source contrast (T1-weighted) was lightly
undersampled by RT1 =1x, 2x, 3x, and the acquisitions for the target contrasts
(T2- and PD-weighted) were heavily undersampled by R=5x, 10x, 20x, 30x,
40x, 50x. (a) PSNR (mean±standard error) across the test subjects for
rsGAN, rGAN, jGAN, and sGAN when T2 is the target contrast. (b) PSNR
(mean±standard error) for sGAN, rGAN, jGAN, and rsGAN when PD is the
target contrast. As expected, rsGAN outperforms sGAN, rGAN, and jGAN at
all R. At the same time, performance of rsGAN is highly similar for distinct
values of RT1 .

a fully-sampled acquisitions of the source contrast enables
rsGAN to more reliably recover high-frequency information
compared to rGAN and jGAN, and that the use of evidence
collected on the target contrast ensures that rsGAN yields more
accurate recovery compared to sGAN. Next, we demonstrated
the proposed method on a dataset acquired in patients with
high- or low-grade gliomas. We considered two models on
the BRATS dataset: a model to recover T2-weighted images
given T1-weighted images, and another to recover T1-weighted
images given T2-weighted images. Tables III and IV list the
respective PSNR and SSIM values, and Fig. 7 illustrates model
performance as a function of R. Representative T2- and T1-
weighted images in the BRATS dataset recovered with ZF,
jGAN, sGAN and rsGAN at R=50x are shown in Fig. 8. Note
that multi-contrast images can show differential sensitivity to
tumor tissue, where tumors can be more easily delineated in
T2- versus T1-weighted images particularly in patients with
low-grade glioma. As a result, sGAN suffers from either loss
of features in the target contrast or synthesis of artefactual
features. Meanwhile, jGAN suffers from excessive loss of
high spatial frequency information at high R. In comparison,

Fig. 10. Multi-contrast images in the IXI dataset were recovered, where the
source contrast (T1-weighted) was lightly undersampled at RT1 =2x, and the
target contrasts (T2- and PD-weighted) were heavily undersampled at R=30x.
Images were recovered using ZF, sGAN, jGAN and rsGAN. (a) Recovered
T2-weighted images. (b) Recovered PD-weighted images. Samples regions
where rsGAN yields sharper images and improved suppression of aliasing
artifacts are marked with arrows.
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rsGAN achieves higher spatial acuity while preventing feature
losses and artefactual synthesis. Thus, the rsGAN method
enables more reliable and accurate recovery when the source
contrast is substantially less or more sensitive to differences
in relaxation parameters of two tissues compared to the target
contrast.

Next, we demonstrated the utility of rsGAN to recover
multiple target contrasts simultaneously. The specific model
tested on the IXI dataset was aimed to recover both T2-
and PD-weighted images given T1-weighted images as source
contrast. We examined the effect of light undersampling per-
formed on the source contrast (RT1 =1x, 2x, 3x) in addition to
heavy undersampling on the target contrasts (R=5x, 10x, 20x,
30x, 40x, 50x). Tables V and VI list the PSNR and SSIM
measurements for T2- and PD-weighted images, respectively.
Fig. 9 illustrates model performance as a function of RT1

and R. Representative T2- and PD-weighted images in the
IXI dataset recovered with ZF, jGAN, sGAN and rsGAN at
RT1 =2x, R=30x are shown in Fig. 10. The rsGAN method
yields sharper images and improved suppression of alias-
ing artifacts compared to jGAN and sGAN, even when the
source contrast acquisitions are accelerated. Across all public
datasets, rsGAN achieves 1.66dB higher PSNR and 3.45%
higher SSIM compared to rGAN, 1.40dB higher PSNR and
2.80% higher SSIM compared to jGAN, and 5.18dB higher
PSNR and 3.83% higher SSIM compared to sGAN.

We also examined the effects of perceptual prior and
variable-density sampling patterns in rsGAN. Supp. Tables
I-VI list the PSNR and SSIM measurements across the
recovered images in all public datasets. We find that the
original rsGAN model outperforms rsGAN- on average by
0.53dB PSNR and 0.37% SSIM across the datasets. This result
demonstrates the benefit of the perceptual prior for recovery
performance. Comparisons among rsGAN and sr-sGAN indi-
cate that rsGAN shows superior performance to sr-sGAN at all
acceleration factors up to R=20 where rsGAN achieves 1.01dB
higher PSNR and 0.40% higher SSIM, and the two methods
perform similarly for R>20 where the differences are 0.16dB
PSNR and 0.12% SSIM. Similar performance at very high
accelerations is expected since the variable-density sampling
patterns in rsGAN approach the central sampling patterns in
sr-sGAN at these acceleration rates.

2) Multi-Coil Dataset: We then demonstrated the proposed
approach on complex multi-coil dataset. The model was
aimed to recover both T2- and PD-weighted images given
T1-weighted images as source contrast. We examined the
effect of light undersampling performed on the source contrast
(RT1 =1x, 2x, 3x) in addition to heavy undersampling on the
target contrasts (R=5x, 10x, 15x, 20x, 25x, 30x). Tables VII
and VIII list the PSNR and SSIM measurements for T2- and
PD-weighted images, respectively. Fig. 11 illustrates model
performance as a function of RT1 and R. Overall, rsGAN
is the leading performer. rsGAN (RT1 =1) achieves 0.67 dB
higher PSNR and 1.81% higher SSIM than rGAN, 0.58 dB
higher PSNR and 1.56% higher SSIM than jGAN, and 5.61dB
higher PSNR and 5.95% higher SSIM than sGAN. Even at
RT1 =3 rsGAN outperforms both rGAN and sGAN in terms of
PSNR across values of R>10x. The only exception is at R=5x,

where rGAN increases T2 recovery quality over rsGAN. This
result suggests that at very low accelerations, the benefits of
added prior information from the source can be outweighed
by the added model complexity in rsGAN. Representative T2-
and PD-weighted images in the multi-coil dataset recovered
with ZF, rGAN, sGAN and rsGAN at RT1 =1x, R=10x are
shown in Fig. 12. The rsGAN method yields sharper images
and improved suppression of aliasing artifacts compared to
rGAN and sGAN.

Next we measured recovery performance for jGAN and
rsGAN with the same overall scan time of 250 sec. For jGAN
this corresponds to R=8.9x across all contrasts, whereas for
rsGAN this corresponds to RT1 =3x for the source contrast
and R=15x for target contrasts. Across all three contrasts,
rsGAN significantly outperforms jGAN in SSIM (p<0.05) by
0.63% while the two methods have similar PSNR. For the
fixed scan time of 250 sec, we also compared the recovery
performance of rsGAN explicitly for the source contrast. We
observe that rsGAN outperforms jGAN by 4.69 dB in PSNR,
and 6.16% in SSIM (p<0.05). This indicates that rsGAN is
superior in recovery of the source contrasts as expected. These
results showcase a scenario where rsGAN with nonuniform
acceleration is preferable to jGAN with uniform acceleration.

B. Control Experiments

To rule out potential biases in model generalizability due
to selection of cross-sections, we conducted control experi-
ments in the IXI dataset where we considered two sets of
models (see Methods for rGAN, jGAN, rsGAN and rGANAll,
jGANAll, rsGANAll). Supp. Table VII lists PSNR and SSIM
measurements across the recovered images. Overall, rGANAll
outperforms rGAN by 0.26dB in PSNR and 0.35% in SSIM,
jGANAll outperforms jGAN by 0.30dB in PSNR and 0.36%
in SSIM, and rsGANAll outperforms rsGAN by 0.32dB in
PSNR and 0.44% in SSIM. Note that the slight performance
improvement is natural since the test set contained peripheral
cross-sections that were intentionally removed from the train-
ing set of rGAN, jGAN and rsGAN, but not included in the
training set of rGANAll, jGANAll and rsGANAll. Second, we

Fig. 11. The proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1-, T2- and PD-weighted images from the multi-
coil dataset. The acquisition for the source contrast (T1-weighted) was lightly
undersampled by RT1 =1x, 2x, 3x, and the acquisitions for the target contrasts
(T2- and PD-weighted) were heavily undersampled by R=5x, 10x, 15x, 20x,
25x, 30x. (a) PSNR (mean±standard error) across the test images (coronal
cross-sections) for rsGAN, rGAN, jGAN, and sGAN when T2 is the target
contrast. (b) PSNR (mean±standard error) for sGAN, rGAN, jGAN, and
rsGAN when PD is the target contrast. As expected, rsGAN outperforms
sGAN, rGAN, and jGAN at high values of R. At the same time, performance
of rsGAN is highly similar for distinct values of RT1 .
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TABLE V
QUALITY OF RECOVERED T2 -WEIGHTED IMAGES IN THE IXI DATASET

rGAN jGAN rsGAN (RT1 =1) rsGAN (RT1 =2) rsGAN (RT1 =3)
PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%)

R=5x 35.66±0.32 97.34± 0.16 35.80±0.29 97.46± 0.15 36.18±0.31† 97.70± 0.14† 36.01±0.29 97.58± 0.15 35.88±0.30 97.50± 0.15
R=10x 31.59±0.28 94.43± 0.34 31.80±0.27 94.76± 0.32 32.82±0.29† 95.91± 0.26† 32.56±0.29 95.63± 0.28 32.37±0.29 95.41± 0.29
R=20x 28.20±0.25 90.08± 0.55 28.45±0.24 90.69± 0.53 30.26±0.28† 93.87± 0.40† 30.03±0.26 93.46± 0.41 29.78±0.26 93.11± 0.42
R=30x 26.78±0.27 87.30± 0.69 26.99±0.26 88.09± 0.66 29.41±0.30† 93.09± 0.46† 29.13±0.29 92.59± 0.47 28.88±0.29 92.18± 0.50
R=40x 25.78±0.27 85.12± 0.82 26.00±0.26 85.83± 0.76 29.09±0.32† 92.71± 0.51† 28.78±0.28 92.18± 0.51 28.56±0.27 91.76± 0.52
R=50x 25.02±0.28 83.16± 0.95 25.30±0.26 84.08± 0.87 28.86±0.33† 92.48± 0.52† 28.61±0.30 91.96± 0.53 28.36±0.29 91.51± 0.55

sGAN
PSNR SSIM (%)

27.06±0.41 90.97± 0.72
T1-weighted acquisitions accelerated to various degrees (RT1 ) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the

target contrasts. PSNR and %SSIM values (mean±standard error) for T2-weighted images across the test subjects are listed for rGAN, jGAN, sGAN, and
rsGAN. The highest PSNR and SSIM values in each row are marked in bold font, and the significantly better performing values (p<0.05) among rGAN,
jGAN, sGAN, and rsGAN(T1 =1) are marked with the ’†’ symbol.

TABLE VI
QUALITY OF RECOVERED PD-WEIGHTED IMAGES IN THE IXI DATASET

rGAN jGAN rsGAN (RT1 =1) rsGAN (RT1 =2) rsGAN (RT1 =3)
PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%)

R=5x 33.93±0.48 97.46± 0.16 34.19±0.42 97.63± 0.15 34.56±0.44† 97.91± 0.13† 34.30±0.41 97.79± 0.14 34.15±0.43 97.71± 0.14
R=10x 29.84±0.49 94.62± 0.33 30.08±0.51 94.99± 0.31 31.23±0.39† 96.12± 0.25† 30.97±0.40 95.84± 0.26 30.76±0.39 95.64± 0.27
R=20x 27.45±0.48 90.35± 0.58 27.53±0.49 91.03± 0.55 29.13±0.41† 94.05± 0.38† 28.92±0.41 93.62± 0.39 28.74±0.42 93.30± 0.41
R=30x 26.29±0.54 87.68± 0.74 26.40±0.50 88.39± 0.73 28.29±0.43† 93.24± 0.46† 28.11±0.42 92.74± 0.48 27.94±0.44 92.35± 0.50
R=40x 25.53±0.49 85.42± 0.91 25.67±0.48 86.20± 0.85 27.92±0.42† 92.74± 0.51† 27.73±0.40 92.21± 0.52 27.63±0.39 91.79± 0.54
R=50x 24.92±0.48 83.70± 1.02 25.09±0.47 84.63± 0.95 27.67±0.42† 92.56± 0.53† 27.51±0.39 92.00± 0.53 27.37±0.40 91.56± 0.56

sGAN
PSNR SSIM (%)

26.07±0.47 91.22± 0.67
T1-weighted acquisitions accelerated to various degrees (RT1 ) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the

target contrasts.
TABLE VII

QUALITY OF RECOVERED T2 -WEIGHTED IMAGES IN THE MULTI-COIL DATASET

rGAN jGAN (RT1 =1) rsGAN (RT1 =1) rsGAN (RT1 =2) rsGAN (RT1 =3)
PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%)

R=5x 35.71±0.08† 97.62± 0.03 35.47±0.08 97.53± 0.03 35.51±0.08 97.61± 0.03 35.44±0.08 97.56± 0.03 35.44±0.08 97.53± 0.03
R=10x 31.93±0.07 95.27± 0.06 32.01±0.07 95.40± 0.06 32.05±0.08 95.64± 0.05† 31.94±0.08 95.52± 0.06 31.86±0.08 95.42± 0.06
R=15x 29.58±0.07 92.78± 0.09 29.15±0.08 91.92± 0.11 29.90±0.09† 93.66± 0.09† 29.77±0.09 93.42± 0.09 29.66±0.09 93.22± 0.10
R=20x 28.30±0.07 90.87± 0.11 28.41±0.07 91.22± 0.10 28.85±0.08† 92.42± 0.10† 28.79±0.08 92.21± 0.10 28.65±0.08 91.96± 0.11
R=25x 27.40±0.07 89.59± 0.12 27.41±0.07 89.33± 0.13 28.08±0.07† 91.21± 0.11† 27.86±0.07 90.67± 0.12 27.74±0.07 90.40± 0.11
R=30x 26.48±0.06 87.80± 0.14 26.66±0.07 87.97± 0.13 27.54±0.08† 90.56± 0.13† 27.37±0.07 90.06± 0.13 27.29±0.07 89.77± 0.13

sGAN
PSNR SSIM (%)

28.45±0.07 87.16± 0.19
T1-weighted acquisitions accelerated to various degrees (RT1 ) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the target

contrasts.

Fig. 12. Multi-contrast images in the multi-coil dataset were recovered, where
the source contrast (T1-weighted) was fully sampled, and the target contrasts
(T2- and PD-weighted) were heavily undersampled at R=10x. Images were
recovered using ZF, sGAN, jGAN and rsGAN. (a) Recovered T2-weighted
images. (b) Recovered PD-weighted images. Sample regions that are better
recovered by rsGAN are marked with arrows.

observe that results of the control experiments are consistent
with the original experiments in demonstrating the superiority

of rsGAN over alternative models. Overall, rsGANAll achieves
1.80dB higher PSNR and 4.27% higher SSIM than rGANAll,
and 1.63dB higher PSNR and 3.74% higher SSIM than
jGANAll. Note that rsGAN also achieves 1.48dB higher PSNR
and 3.84% higher SSIM than rGANAll, and 1.30dB higher
PSNR and 3.31% higher SSIM than jGANAll.

To examine the effects of input phase channels in recovery
of coil-combined magnitude images, two sets of models were
considered (rsGANm and rsGAN) for T2 recovery in the
BRATS dataset. Supp. Table VIII lists PSNR and SSIM mea-
surements across the recovered images. We find that removing
the phase channels from the rsGAN model decreases average
PSNR and SSIM by 0.30dB and 0.05%. This difference might
be attributed to the nature of phase images that typically
emphasize information about tissue boundaries.

Next, we conducted additional experiments to rule out any
bias that might have occurred due to differences in model com-
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TABLE VIII
QUALITY OF RECOVERED PD-WEIGHTED IMAGES IN THE MULTI-COIL DATASET

rGAN jGAN (RT1 =1) rsGAN (RT1 =1) rsGAN (RT1 =2) rsGAN (RT1 =3)
PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%) PSNR SSIM (%)

R=5x 36.31±0.11 97.55± 0.05 36.15±0.12 97.53± 0.05 36.40±0.12† 97.74± 0.05† 36.32±0.11 97.66± 0.05 36.28±0.11 97.61± 0.05
R=10x 32.06±0.12 94.88± 0.09 31.82±0.12 95.19± 0.08 32.64±0.11† 95.77± 0.07† 32.65±0.11 95.58± 0.08 32.53±0.11 95.41± 0.08
R=15x 29.27±0.12 91.72± 0.16 29.81±0.11 92.35± 0.14 30.28±0.12† 93.91± 0.10† 30.29±0.11 93.61± 0.11 30.23±0.11 93.41± 0.11
R=20x 27.94±0.11 89.83± 0.17 28.30±0.11 90.32± 0.17 28.92±0.12† 92.05± 0.16† 28.78±0.11 91.76± 0.16 28.71±0.11 91.51± 0.16
R=25x 27.34±0.11 88.28± 0.20 27.73±0.09 88.96± 0.18 28.48±0.11† 92.01± 0.13† 28.50±0.11 91.62± 0.14 28.29±0.11 91.18± 0.14
R=30x 26.36±0.10 86.07± 0.25 26.80±0.10 87.52± 0.20 28.01±0.11† 91.38± 0.14† 27.85±0.11 90.86± 0.14 27.67±0.11 90.44± 0.15

sGAN
PSNR SSIM (%)

25.03±0.08 88.27± 0.17
T1-weighted acquisitions accelerated to various degrees (RT1 ) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the

target contrasts.

plexities among rGAN, jGAN, sGAN and rsGAN. These ex-
periments were conducted on the BRATS dataset where T1 was
set as the source contrast and T2 was set as the target contrast.
Supp. Table IX lists PSNR and SSIM measurements across
the recovered images. We find that rsGAN still outperforms
rGANMC, jGANMC and sGANMC that were matched to rsGAN
in model complexity. Overall rsGAN outperforms rGANMC by
1.39dB PSNR and 1.50% SSIM, jGANMC by 0.99dB PSNR
and 1.19% SSIM, and sGANMC by 7.81dB PSNR and 4.99%
SSIM. Furthermore, changing network complexity has minor
effects in terms of model performance. Overall, performance
in rGAN changes by 0.03dB PSNR and 0.02% SSIM, in
jGAN changes by 0.19dB PSNR and 0.04% SSIM, and in
sGAN changes by 0.56dB PSNR and 0.19% SSIM. Taken
together, these experiments indicate that our results are not
unduly biased by variability in model complexity.

We also evaluated the ability of rsGAN in recovering FLAIR
images. rGAN, jGAN and rsGAN were compared in terms
of average performance on the BRATS dataset. Supp. Table
X lists PSNR and SSIM measurements across the recovered
images. We find that rsGAN outperforms both rGAN and
jGAN (please see Supp. Fig. 1 for representative images). In
this task, rsGAN outperforms rGAN by 0.74dB PSNR and
0.85% SSIM, and jGAN by 0.62dB PSNR and 0.65% SSIM.
These results suggest that the proposed rsGAN model has
potential to synthesize a broader selection of contrasts.

Lastly, we compared the original rsGAN model that inde-
pendently recovers all targets in a multi-target-contrast setting
(rsGAN1) against a unified rsGAN model that simultaneously
recovers all target contrasts (rsGAN2). Comparisons were per-
formed for recovery of T2 and FLAIR images in the BRATS
dataset. Supp. Table XI lists PSNR and SSIM measurements
across the recovered images. We find that rsGAN1 yields
0.25dB higher PSNR and 0.10% higher SSIM than rsGAN2.
Note that this moderate performance drop in the unified model
is expected, as rsGAN2 has to compromise between recovery
losses for the two target contrasts.

IV. DISCUSSION

A synergistic reconstruction-synthesis approach based on
conditional GANs was presented for highly accelerated multi-
contrast MRI. In this approach, several source- and target-
contrast acquisitions accelerated to various degrees are taken
as input, and high-quality images for individual contrasts are

then recovered. The proposed rsGAN method yielded superior
recovery performance against state-of-the-art reconstruction
and synthesis methods in three public MRI datasets and a
multi-coil dataset. While rsGAN was demonstrated for multi-
contrast MRI here, it may also offer improved performance in
recovery of images in accelerated multi-modal datasets.

Several previous studies considered joint reconstructions
of multi-contrast acquisitions to better use shared structural
information among contrasts. In the CS framework, a typical
scenario involves multiple acquisitions with nearly identical
acceleration rates [70], [71]. Undersampled data are jointly
processed, and a joint-sparsity regularization term improves
recovery of shared features across contrasts. Another scenario
involves the fully-sampled acquisition of a reference contrast
that is then used as a structural prior for other contrasts
[72]. Prior-guided reconstructions use regularization terms that
enforce consistency of the magnitude and direction of image
gradients across distinct contrasts. These previous approaches
yield enhanced quality over independent processing of each
contrast. However, hand-crafted regularization terms based on
transforms such as total variation or wavelet reflect often
suboptimal assumptions about structural similarity among sep-
arate contrasts. The proposed rsGAN method instead employs
a data-driven approach to learn to utilize information from
source contrast during recovery of target contrasts.

Few recent studies proposed a learning-based method for
joint reconstruction of multi-contrast MRI data [53]–[55]. Ac-
quisitions for separate contrasts were accelerated at identical
rates. Convolutional neural network architectures were used
with a subset of network weights shared across contrasts to
better capture structural similarities among contrasts. While
these previous methods were shown to outperform conven-
tional CS and parallel imaging reconstructions, these are
pure reconstruction approaches that can suffer from scarce
sampling of high spatial frequencies at high acceleration rates.
In contrast, rsGAN employs detailed structural information in
a source contrast to enhance the recovery of high-frequency
samples in target contrasts. Since the source acquisitions
are fully-sampled or lightly undersampled, rsGAN shows
improved reliability against losses in resolution. Furthermore,
GANs have been shown to better learn the distribution of target
images compared to conventional network architectures.

Several independent studies proposed convolutional neural
networks for recovery of a target contrast by making use
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of structural information from a source contrast [56]–[59].
Perhaps, the closest to our study is [59], where recovery
from a low-resolution target-contrast image was enhanced by
incorporating fully-sampled acquisition of a separate contrast
[59]. Our study is different from [59] in the following aspects:
1) We demonstrate the proposed approach for reconstruction of
multi-coil complex MR images, whereas [59] consider a model
to post-process coil-combined images that were already recon-
structed. 2) We demonstrate that the proposed approach can
jointly reconstruct and synthesize the target contrast even when
the source contrasts are undersampled. 3) We demonstrate that
the proposed approach can enable high acceleration factors
up to 50x by incorporating information from both source and
target contrasts. 4) We incorporate an additional perceptual
prior to improve recovery of high-level image features. In
addition to these technical differences, we also demonstrated
superiority of rsGAN over [59] at all acceleration factors up
to 20 (Supp. Tables I-VI).

The synthesis framework is an alternative for recovery of
images of a target contrast, where data are only available in a
different source contrast. A powerful approach is to construct
dictionaries from multi-resolution image patches, and to learn
a mapping between the source and target dictionaries [23],
[24], [27], [28], [32]. Segregation of the dictionary extraction
and mapping stages might yield suboptimal performance.
Network-based approaches offer a remedy to this problem by
unifying the two stages [25], [34]–[36]. We recently proposed
GAN-based synthesis for multi-contrast MRI that yielded en-
hanced performance compared to conventional methods [39].
Yet, due to lack of evidence on the target contrast, a pure
synthesis approach can suffer from artificial sensitivity or
insensitivity to image features. The rsGAN method, on the
other hand, always collects a moderate to small amount of
evidence. This helps avoid artefactual feature leakage from the
source to the target contrast or loss of target-contrast features
that are not apparent in the source contrast.

An important query about the proposed approach is selec-
tion of source and target contrasts. Note that rsGAN performs
heavy undersampling for only target contrasts, while mod-
erately undersampling source contrasts to preserve as much
information regarding detailed tissue structure as possible.
This suggests that, in a given MRI protocol, contrasts with
better capture of structural details and relatively shorter scan
times should be designated as source contrasts, whereas con-
trasts with relatively limited capture of structural details and
longer scan times should be designated as target contrasts.
Clinical protocols typically start with a high-resolution T1-
weighted acquisition, so we considered T1 as a natural source
contrast in the current study. Meanwhile, remaining contrasts
including T2, PD or FLAIR with relatively lower capture of
structural details and longer scan times were designated as
target contrasts. In cases where multiple candidates exist, a
selection might be necessary to minimize the overall scan
time. For example, diagnostic protocols for glioma typically
include T1-weighted, postcontrast T1-weighted, T2-weighted,
and FLAIR acquisitions. In this case, both T1 and postcontrast
T1 acquisitions are possible candidates of source contrasts.
Yet, given the benefits of postcontrast T1 over T1 in terms of

diagnostic accuracy and/or tumor segmentation, postcontrast
T1 can be selected.

Here, the experiment for a fixed scan time was based
on T1-weighted acquisitions with a 3D MP-RAGE sequence,
and T2- and PD-weighted acquisitions with a 3D Spin-Echo
sequence. Naturally the optimal distribution of acceleration
factors across contrasts might vary depending on the specific
sequences prescribed for each contrast. When other sequences
or different sets of sequence parameters are prescribed, the
distribution of acceleration factors across contrasts can be re-
tuned empirically to maximize reconstruction performance. To
ensure optimal performance, separate networks can be trained
for each MR protocol and overall scan time. But since network
training is performed off-line prior to MR scans, the recovery
time would not be affected.

The superiority of rsGAN over jGAN in recovering source
contrasts might motivate its use in several scenarios. First,
rsGAN can be used to recover a specific source contrast with
higher quality within an MRI protocol. The enhanced recovery
can prove useful when task-critical information is largely
concentrated in this source contrast. For instance, high-quality
T1-weighted brain images are vital for accurate segmentation
of white and gray matter, or high-quality postcontrast T1-
weighted images serve as a gold-standard tool for tumor
localization. Second, rsGAN can be employed in longitudinal
imaging studies [73], [74], where subjects are scanned in
multiple sessions over extended periods of time. This can help
reduce scan time and increase patient comfort in multi-session
MRI exams. In such cases, fully-sampled source contrasts can
be acquired during the initial session, and they can then aid
recovery in subsequent sessions. Lastly, rsGAN might offer
utility in facilitating efficient re-acquisition of problematic
images in a multi-contrast exam. When a subset of acquisitions
suffers from severe patient motion or artifacts, the acquisitions
can be repeated at significantly higher acceleration factors
to minimize undesirable increase in scan time. The resulting
multi-contrast acquisitions with non-uniform undersampling
across contrasts can then be recovered with rsGAN. When the
source contrast is affected by motion, it could be reacquired
at a moderate acceleration factor and recovered using rGAN.
Alternatively, a separate network for suppression of motion
artifacts could be trained [75] and used as a pre-processing
step to rsGAN.

Several technical developments are viable for improving
the current implementation of the proposed method. First, the
model can be generalized to simultaneously process multiple
neighboring cross-sections in addition to multiple contrasts.
Correlated tissue structure across cross sections might en-
hanced recovery despite the increase in model complexity.
Second, when multiple source contrasts are present, a weight
sharing method can be used to enforce a shared latent repre-
sentation among contrasts for improved performance. Lastly,
a cycleGAN-based model [65] might be implemented to allow
for learning on unpaired multi-contrast MRI datasets that are
relatively more available than paired datasets.
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V. CONCLUSION

We proposed a synergistic reconstruction-synthesis method
for accelerated multi-contrast MRI based on conditional gener-
ative adversarial networks. End-to-end trained GANs are used
to recover high-quality images of target and source contrasts
given undersampled acquisitions. Unlike pure learning-based
reconstruction, rsGAN uses high-spatial-frequency prior in-
formation in the source contrast to enhance recovery of the
target contrast. Unlike pure learning-based synthesis, rsGAN
bases recovered images on evidence collected through heavily
undersampled acquisitions of the target contrast. The proposed
method outperforms state-of-the-art reconstruction and synthe-
sis methods, with enhanced recovery of high-frequency tissue
structure, and improved reliability against feature leakage or
loss. The rsGAN method holds great promise for highly
accelerated multi-contrast MRI in clinical practice.
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