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ABSTRACT 
 
Humans are remarkably adept in listening to a desired speaker in a crowded environment, while 
filtering out non-target speakers in the background. Attention is key to solving this difficult cocktail-
party task, yet a detailed characterization of attentional effects on speech representations is lacking. 
It remains unclear across what levels of speech features and how much attentional modulation occurs 
in each brain area during the cocktail-party task. To address these questions, we recorded whole-brain 
BOLD responses while subjects either passively listened to single-speaker stories, or selectively 
attended to a male or a female speaker in temporally-overlaid stories in separate experiments. 
Spectral, articulatory, and semantic models of the natural stories were constructed. Intrinsic selectivity 
profiles were identified via voxelwise models fit to passive listening responses. Attentional 
modulations were then quantified based on model predictions for attended and unattended stories in 
the cocktail-party task. We find that attention causes broad modulations at multiple levels of speech 
representations while growing stronger towards later stages of processing, and that unattended 
speech is represented up to the semantic level in parabelt auditory cortex. These results provide 
insights on attentional mechanisms that underlie the ability to selectively listen to a desired speaker 
in noisy multi-speaker environments.  
 
Keywords: cocktail-party, dorsal and ventral stream, encoding model, fMRI, natural speech. 
 

INTRODUCTION 
 
Humans are highly adept at perceiving a target speaker in crowded multi-speaker environments 
(Shinn-Cunningham and Best 2008; Kidd and Colburn 2017; Li et al. 2018). Auditory attention is key to 
behavioral performance in this difficult “cocktail-party problem” (Cherry 1953; Fritz et al. 2007; 
McDermott 2009; Bronkhorst 2015; Shinn-Cunningham et al. 2017). Literature consistently reports 
that attention selectively enhances cortical responses to the target stream in auditory cortex and be-
yond, while filtering out non-target background streams (Hink and Hillyard 1976; Teder et al. 1993; 
Alho et al. 1999, 2003, 2014; Jäncke et al. 2001, 2003; Lipschutz et al. 2002; Rienne et al. 2008, 2010; 
Elhilali et al. 2009; Gutschalk and Dykstra 2014). However, the precise link between the response mod-
ulations and underlying speech representations is less clear. Speech representations are hierarchically 
organized across multiple stages of processing in cortex, with each stage selective for diverse infor-
mation ranging from low-level acoustic to high-level semantic features (Davis and Johnsrude 2003; 
Griffiths and Warren 2004; Hickok and Poeppel 2004, 2007; Rauschecker and Scott 2009; Friederici 
2011; Di Liberto et al. 2015; de Heer et al. 2017; Brodbeck et al. 2018a). Thus, a principal question is 
to what extent attention modulates these multi-level speech representations in the human brain dur-
ing a cocktail-party task (Miller 2016; Simon 2017). 
 
Recent electrophysiology studies on the cocktail-party problem have investigated attentional re-
sponse modulations for natural speech stimuli (Kerlin et al. 2010; Ding and Simon 2012a, 2012b; 
Mesgarani and Chang 2012; Power et al. 2012; Zion Golumbic et al. 2013; Puvvada and Simon 2017; 
Brodbeck et al. 2018b; O'Sullivan et al. 2019; Puschman et al. 2019). Ding and Simon (2012a, 2012b) 
fit spectrotemporal encoding models to predict cortical responses from the speech spectrogram. At-
tentional modulation in the peak amplitude of spectrotemporal response functions was reported in 
planum temporale in favor of the attended speech. Mesgarani and Chang (2012) built decoding mod-
els to estimate the speech spectrogram from responses measured during passive listening, and exam-
ined the similarity of the decoded spectrogram during a cocktail-party task to the isolated spectro-
grams of attended versus unattended speech. They found higher similarity to attended speech in non-
primary auditory cortex. Zion Golumbic et al. (2013) reported amplitude modulations in speech-enve-
lope response functions towards attended speech across auditory, inferior temporal, frontal and pa-
rietal cortices. Other studies using decoding models have similarly reported higher decoding 
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performance for the speech envelope of the attended stream in auditory, prefrontal, motor and so-
matosensory cortices (Puvvada and Simon 2017; Puschmann et al. 2019). Brodbeck et al. (2018b) fur-
ther identified peak amplitude response modulations for sub-lexical features including word onset 
and cohort entropy in temporal cortex. Note that because these electrophysiology studies fit models 
for acoustic or sub-lexical features, the reported attentional modulations primarily comprised rela-
tively low-level speech representations.  
 
Several neuroimaging studies have also examined whole-brain cortical responses to natural speech in 
a cocktail-party setting (Nakai et al. 2005; Alho et al. 2006; Ikeda et al. 2010; Hill and Miller 2010; Wild 
et al. 2012; Regev et al. 2019). Hill and Miller (2010) measured BOLD response levels while subjects 
either passively listened to speech streams or attended to a target stream based on pitch or location. 
Attentional increases in BOLD responses were reported in non-primary auditory cortex as well as in-
sula, frontal and parietal cortices. Furthermore, pitch-based attention was found to elicit higher re-
sponses in bilateral posterior and right middle superior temporal sulcus, whereas location-based at-
tention elicited higher responses in left intraparietal sulcus. In alignment with electrophysiology stud-
ies, these results suggest that attention modulates relatively low-level speech representations com-
prising paralinguistic features. In a more recent study, Regev et al. (2019) measured responses under 
two distinct conditions: while subjects were presented bimodal speech-text stories and asked to at-
tend to either the auditory or visual stimulus, and while subjects were presented unimodal speech or 
text stories. Correlation of response patterns was measured between unimodal and bimodal condi-
tions. Broad attentional modulations in response correlation were reported from primary auditory 
cortex to temporal, parietal and frontal regions in favor of the attended modality. While this finding 
raises the possibility that attention might also affect representations in higher-order regions, a sys-
tematic characterization of individual speech features that drive attentional modulations across cortex 
is lacking.  
 
An equally important question regarding the cocktail-party problem is whether unattended speech 
streams are represented in cortex despite the reported modulations in favor of the target stream 
(Bronkhorst 2015; Miller 2016). Electrophysiology studies on this issue identified representations of 
low-level spectrogram and speech envelope features of unattended speech in early auditory areas 
(Ding and Simon 2012a, 2012b; Mesgarani and Chang 2012; Zion Golumbic et al. 2013; Puvvada and 
Simon 2017; Brodbeck et al. 2018b; Puschmann et al. 2019), but no representations of linguistic fea-
tures (Brodbeck et al. 2018b). Meanwhile, a group of neuroimaging studies found broader cortical 
responses to unattended speech in superior temporal cortex (Scott et al. 2004, 2009; Wild et al. 2012; 
Scott and McGettigan 2013; Evans et al. 2016; Regev et al. 2019). Specifically, Wild et al. (2012) and 
Evans et al. (2016) reported enhanced activity associated with the intelligibility of unattended stream 
in parts of superior temporal cortex extending to superior temporal sulcus. Although this implies that 
responses in relatively higher auditory areas carry some information regarding unattended speech 
stimuli, the specific features of unattended speech that are represented across the cortical hierarchy 
of speech is lacking.  
 
Here we questioned whether and how attention affects representations of attended and unattended 
natural speech across cortex. To address these questions, we systematically examined multi-level 
speech representations during a naturalistic and diotic cocktail-party task. Whole-brain BOLD re-
sponses were recorded in two separate experiments while subjects were presented engaging spoken 
narratives from The Moth Radio Hour. In the passive-listening experiment, subjects listened to single-
speaker stories for over two hours. Separate voxelwise models were fit that measured selectivity for 
spectral, articulatory, and semantic features of natural speech during passive listening (de Heer et al. 
2017). In the cocktail-party experiment, subjects listened to temporally-overlaid speech streams from 
two speakers while attending to a target category (male or female speaker). To assess attentional 
modulation in functional selectivity, voxelwise models fit during passive listening were used to predict 
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responses for the cocktail-party experiment. Model performances were calculated separately for at-
tended and unattended stories. Attentional modulation was taken as the difference between these 
two performance measurements. Comprehensive analyses were conducted to examine the intrinsic 
complexity and attentional modulation of multi-level speech representations and to investigate up to 
what level of speech features unattended speech is represented across cortex. 
 

Materials and Methods 
 
Participants 
Functional data were collected from five healthy adult subjects (four males and one female; aged be-
tween 26 and 31) who had no reported hearing problems. The experimental procedures were ap-
proved by the Committee for the Protection of Human Subjects at University of California, Berkeley. 
Written informed consent was obtained from all subjects. 
 
Stimuli 
Figure 1 illustrates the two main types of stimuli used in the experiments: single-speaker stories (pas-
sive-story) and two-speaker stories (cocktail-story). Ten passive-stories were taken from The Moth 
Radio Program: “Alternate Ithaca Tom” by Tom Weiser; “How to Draw a Nekkid Man” by Tricia Rose 
Burt; “Life Flight” by Kimberly Reed; “My Avatar and Me” by Laura Albert; “My First Day at the Yan-
kees” by Matthew McGough; “My Unhurried Legacy” by Kyp Malone; “Naked” by Catherine Burns; 
“Ode to Stepfather” by Ethan Hawke; “Targeted” by Jen Lee and “Under the Influence” by Jeffery 
Rudell. All stories were told before a live audience by a male or female speaker, and they were about 
10-15 min long. Each cocktail-story was generated by temporally overlaying a pair of stories told by 
different genders and selected from the passive-story set. When the durations of the two passive sto-
ries differed, the longer story was clipped from the end to match durations. Three cocktail-stories 
were prepared: from “Targeted” and “Ode to Stepfather” (cocktail1); from “How to Draw a Nekkid 
Man” and “My First Day at the Yankees” (cocktail2); and from “Life Flight” and “Under the Influence” 
(cocktail3). In the end, the stimuli consisted of ten passive-stories and three cocktail-stories. 
 
Experimental procedures 
Figure 1 outlines the two main experiments conducted in separate sessions: passive-listening and 
cocktail-party experiments. In the passive-listening experiment, subjects were instructed to listen to 
single-speaker stories vigilantly albeit without any explicit task. Each of the ten passive-stories was 
presented once in a separate run of the experiment. Two two-hour sessions were conducted, resulting 
in ten runs of passive-data for each subject. In the cocktail-party experiment, subjects were instructed 
to listen to two-speaker stories while attending to a target speaker (either the male or the female 
speaker). Each of the three cocktail-stories was presented twice in separate runs. Different stories 
were presented in consecutive runs while the attention condition was alternated. An exemplary se-
quence of runs was: cocktail1-M (attend to male speaker in cocktail1), cocktakil2-F (attend to female 
speaker in cocktail2), cocktail3-M, cocktail1-F, cocktail2-M, and cocktail3-F. The first attention condi-
tion assigned was counterbalanced across subjects. A single two-hour session was conducted, result-
ing in six runs of cocktail-data for each subject. The dataset collected from the passive-listening exper-
iment was previously analyzed (Huth et al. 2016; de Heer et al. 2017); however, the dataset collected 
from the cocktail-party experiment was specifically collected for this study.  
 
In both experiments, the length of each run was tailored to the length of the story stimulus with ad-
ditional ten sec of silence both before and after the stimulus. All stimuli were played at 44.1 kHz using 
Sensimetrics S14 in-ear piezo-electric headphones. The frequency response of the headphones was 
flattened using a Behringer Ultra-Curve Pro Parametric Equalizer. 
 
MRI data collection and preprocessing 
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MRI data were collected on a 3T Siemens TIM Trio scanner at the Brain Imaging Center, UC Berkeley, 
using a 32-channel volume coil. For functional scans, a gradient echo EPI sequence was used with TR 
= 2.0045 s, TE = 31 ms, flip angle = 70°, voxel size = 2.24 x 2.24 x 4.1 mm3, matrix size = 100 x 100, field 
of view = 224 x 224 mm2 and 32 axial slices covering the entire cortex. For anatomical data, a T1-
weighted multi-echo MP-RAGE sequence was used with voxel size = 1 x 1 x 1 mm3 and field of view = 
256 x 212 x 256 mm3. 
 
Each functional run was motion corrected using FMRIB's Linear Image Registration Tool (FLIRT) (Jen-
kinson and Smith 2001). A cascaded motion-correction procedure was performed, where separate 
transformation matrices were estimated within single runs, within single sessions and across sessions 
sequentially. To do this, volumes in each run were realigned to the mean volume of the run. For each 
session, the mean volume of each run was then realigned to the mean volume of the first run in the 
session. Lastly, the mean volume of the first run of each session was realigned to the mean volume of 
the first run of the first session of the passive-listening experiment. The estimated transformation 
matrices were concatenated and applied in a single step. Non-brain tissues were removed using Brain 
Extraction Tool in FSL 5.0 (Smith 2002). Low-frequency drifts in BOLD responses were removed using 
a 3rd order Savitsky-Golay filter over a 240 s window (Savitzky and Golay 1964). Single voxel responses 
were then z-scored to have zero mean and unit variance within each run. 
 
Visualization on cortical flatmaps 
Cortical flatmaps were used for visualization of model prediction scores, functional selectivity and at-
tentional modulation profiles, and representational complexity and modulation gradients. Cortical 
surfaces were reconstructed from anatomical data using Freesurfer (Dale et al. 1999). Five relaxation 
cuts were made into the surface of each hemisphere, and the surface crossing the corpus callosum 
was removed. Functional data were aligned to the anatomical data via the boundary-based alignment 
tool in FSL (Greve and Fischl 2009). Voxelwise results were projected onto and visualized on the corti-
cal surface via the pycortex toolbox (Gao et al. 2015). 
 
ROI definitions and abbreviations 
We defined region of interests for each subject based on an automatic atlas-based parcellation of the 
cortex (Destrieux et al. 2010). The cortex was segmented into the regions of the Destrieux atlas (Des-
trieux et al. 2010) using Freesurfer (Dale et al. 1999); and these anatomical regions were labeled ac-
cording to the atlas. To explore potential selectivity gradients across the lateral aspects of Superior 
Temporal Gyrus and Superior Temporal Sulcus, these ROIs were further split into three equidistant 
sub-regions in posterior-to-anterior direction. We only considered regions with at least ten speech-
selective voxels in each individual subject for subsequent analyses. 
 
Table S1 lists the defined ROIs and the number of spectrally, articulatorily and semantically selective 
voxels within each ROI, with number of speech-selective voxels. ROI abbreviations and corresponding 
Destrieux indices are: Heschl's Gyrus (HG: 33), Heschl's Sulcus (HS: 74), Planum Temporale (PT: 36), 
posterior segment of Slyvian Fissure (pSF: 41), lateral aspect of Superior Temporal Gyrus (STG: 34), 
Superior Temporal Sulcus (STS, 73), Middle Temporal Gyrus (MTG: 38), Angular Gyrus (AG: 25), Supra-
marginal Gyrus (SMG: 26), Intraparietal Sulcus (IPS: 56), opercular part of Inferior Frontal Gyrus/Pars 
Opercularis (POP: 12), triangular part of Inferior Frontal Gyrus/Pars Triangularis (PTR: 14), Precentral 
Gyrus (PreG: 29), medial Occipito-Temporal Sulcus (mOTS:60), Inferior Frontal Sulcus (IFS: 52), Middle 
Frontal Gyrus (MFG:15), Middle Frontal Sulcus (MFS: 53), Superior Frontal Sulcus (SFS: 54), Superior 
Frontal Gyrus (SFG: 16), Precuneus (PreC: 30), Subparietal Sulcus (SPS: 71), and Posterior Cingulate 
Cortex (PCC: 9 and 10). The subregions of STG are: aSTG (anterior one third of STG), mSTG (middle one 
third of STG) and pSTG (posterior one third of STG). The subregions of STS are: aSTS (anterior one third 
of STS), mSTS (middle one third of STS) and pSTS (posterior one third of STS). MTG was not split into 
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subregions since these subregions did not have a sufficient number of speech-selective voxels in each 
individual subject. 
 
Model construction 
To comprehensively assess speech representations, we constructed spectral, articulatory, and seman-
tic models of the speech stimuli (Figure 2; de Heer et al. 2017). 
 
Spectral model. For the spectral model, spectral power density of the sound signal was computed in 
300 50-Hz bands between 0 Hz and ~15 kHz. The power spectrum was calculated for 50 ms segments 
of the sound signal and expressed in dB units. The resulting spectral features were Lanczos-filtered at 
a cutoff frequency of 0.25 Hz and downsampled to 0.5 Hz to match the sampling rate of fMRI. The 300 
spectral features sampled at every two sec were temporally z-scored to zero mean and unit variance.  
 
Articulatory model. For the articulatory model, each phoneme in the stories was mapped onto a 
unique set of 22 articulation features; for example, phoneme ZH is postalveolar, fricative and voiced 
(Levelt 1993; de Heer et al. 2017). This mapping resulted in 22-dimensional binary vectors for each 
phoneme. To obtain the timestamp of each phoneme and word in the stimuli, the speech in the stories 
were aligned with the story transcriptions using the Penn Phonetics Lab Forced Aligner (Yuan and 
Liberman 2008). Alignments were manually verified and corrected using Praat (www.praat.org). The 
articulatory features were Lanczos-filtered at a cutoff frequency of 0.25 Hz and downsampled to 0.5 
Hz. Finally, the 22 articulatory features were z-scored to zero mean and unit variance.  
 
Semantic model. For the semantic model, co-occurrence statistics of words were measured via a large 
corpus of text (Mitchell et al. 2008; Huth et al. 2016; de Heer et al. 2017). The text corpus was compiled 
from 2,405,569 Wikipedia pages, 36,333,459 user comments scraped from reddit.com, 604 popular 
books and the transcripts of 13 Moth stories (including the stories used as stimuli). We then built a 
10,470-word lexicon from the union set of the 10,000 most common words in the compiled corpus 
and all words appearing in the ten Moth stories used in the experiment. Basis words were then se-
lected as a set of 985 unique words from Wikipedia's List of 1000 Basic Words. Co-occurrence statistics 
of the lexicon words with 985 basis words within a 15-word window were characterized as a co-oc-
currence matrix of size 985x10,470. Elements of the resulting co-occurrence matrix were log-trans-
formed, z-scored across columns to correct for differences in basis-word frequency, and z-scored 
across rows to correct for differences in lexicon-word frequency. Each word in the stimuli was then 
represented with a 985-dimensional co-occurrence vector based on the speech-transcription align-
ments. The semantic features were Lanczos-filtered at a cutoff frequency of 0.25 Hz and downsampled 
to 0.5 Hz. The 985 semantic features were finally z-scored to zero mean and unit variance. 
 
Decorrelation of feature spaces. In natural stories, there might be potential correlations among cer-
tain spectral, articulatory, or semantic features. If significant, such correlations can partly confound 
assessments of model performance. To assess the unique contribution of each feature space to the 
explained variance in BOLD responses, a decorrelation procedure was first performed (Figure 2). To 
decorrelate a feature matrix F of size 𝑚𝑥𝑛 from a second feature matrix K of size 𝑚𝑥𝑝, we first found 
an orthonormal basis for the column space of K (𝑐𝑜𝑙{𝐾}) using economy-size singular value decompo-
sition: 
 

𝐾+,- = 𝑈+,-	𝑥	𝑆-,-	𝑥	𝑉-,- 
 
where U contains left singular vectors as columns, V contains right singular vectors, and S contains the 
singular values. Left singular vectors were taken as the orthonormal basis for col{K}, and each column 
of F was decorrelated from it according to the following formula:  
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Where  𝑓466⃗ , 𝑢=666⃗  are the column vectors of F and U respectively, and 𝑓456666⃗  is the column vectors of the 
decorrelated feature matrix, 𝐹5. To decorrelate feature matrices for the models considered here, we 
took the original articulatory feature matrix as a reference, and decorrelated the spectral feature ma-
trix from the articulatory feature matrix, and decorrelated the semantic feature matrix from both ar-
ticulatory and spectral feature matrices. This decorrelation sequence was selected because spectral 
and articulatory features capture lower-level speech representations, and the articulatory feature ma-
trix had the fewest number of features among all models. In the end, we obtained 3 decorrelated 
feature matrices whose columns had zero correlation with the columns of the other two matrices.  
 
Analyses 
The main motivation of this study is to understand whether and how strongly various levels of speech 
representations are modulated across cortex during a cocktail-party task. To answer this question, we 
followed a two-stage approach as illustrated in Figure 3. In the first stage, we identified voxels selec-
tive for speech features using data from the passive-listening experiment. To do this, we measured 
voxelwise selectivity separately for spectral, articulatory, and semantic features of the passive-stories. 
In the second stage, we used the models fit using passive-data to predict BOLD responses measured 
in the cocktail-party experiment. Prediction scores for attended versus unattended stories were com-
pared to quantify the degree of attentional modulations, separately for each model and globally across 
all models.  
 
Note that a subset of the ten passive-stories were used to generate three cocktail-stories used in the 
experiments. Hence, to prevent potential bias, a three-fold cross-validation procedure was performed 
for testing models fit using passive-data on cocktail-data. In each fold, models were fit using eight-run 
passive-data; and separately tested on two-run passive-data and two-run cocktail-data. There was no 
overlap between the stories in the training and testing runs. Model predictions were aggregated 
across three folds, and prediction scores were then computed.  
 
Voxelwise modeling. In the first stage, we fit voxelwise models in individual subjects using passive-
data. To account for hemodynamic delays, we used a linearized four-tap finite impulse response (FIR) 
filter to allow different HRF shapes for separate brain regions (Goutte et al. 2000). Each model feature 
was represented as four features in the stimulus matrix to account for their delayed effects in BOLD 
responses at 2, 4, 6 and 8 sec. Model weights, 𝑊, were then found using L2-regularized linear regres-
sion: 
 

𝑊 = (𝐹E𝐹 + 𝐼𝜆)JA𝐹E𝑅 
 
Here, 𝜆 is the regularization parameter, 𝐹 is the decorrelated feature matrix for a given model and 𝑅 
is the aggregate BOLD response matrix for cortical voxels. A cross-validation procedure with 50 itera-
tions was performed to find the best regularization parameter for each voxel among 30 equispaced 
values in log-space of 1: 10O. The training passive-data was split into 50 equisized chunks, where 1 
chunk was reserved for validation and 49 chunks were reserved for model fitting at each iteration. 
Prediction scores were taken as Pearson’s correlation between predicted and measured BOLD re-
sponses. The optimal 𝜆 value for each voxel was selected by maximizing the average prediction score 
across cross-validation folds. The final model weights were obtained using the entire set of training 
passive-data and the optimal 𝜆. Next, we measured the prediction scores of the fit models on testing 
passive-data. When a model had less than ten significantly predicted voxels within an ROI, those voxels 
were excluded for that ROI and that model. Speech-selective voxels were then taken as the union of 
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voxels significantly predicted by spectral, articulatory, and semantic models (𝑞(𝐹𝐷𝑅) < 10JS; 	𝑡 −
𝑡𝑒𝑠𝑡). Subsequent analyses were performed on the speech-selective voxels. 
 

a) Model-specific selectivity index. Single-voxel prediction scores on passive-data were used to 
quantify the degree of selectivity of each ROI to the underlying model features under passive-listening. 
To do this, a model-specific selectivity index, (𝑆𝐼+), was defined as follows: 
 

𝑆𝐼+ 	= 	
(𝑟)+
∑ (𝑟)YY

	,								𝑖, 𝑚	 ∈ 	 {𝑠𝑝𝑒, 𝑎𝑟𝑡, 𝑠𝑒𝑚} 

 
where 𝑟 is the average prediction score across speech-selective voxels within the ROI during passive-
listening. 𝑆𝐼+ is in the range of [0, 1], where higher values indicate stronger selectivity for the under-
lying model. 
 

b) Complexity index. The complexity of speech representations was characterized via a complex-
ity index, (𝐶𝐼), which reflected the relative tuning of an ROI for low- versus high-level speech features. 
The following intrinsic complexity levels were assumed for the three speech models considered here: 
(𝑐_-`, 𝑐abc, 𝑐_`+) = (0.0, 0.5, 1.0). Afterwards, 𝐶𝐼 was taken as the average of the complexity levels 
weighted by the selectivity indices: 
  

𝐶𝐼 =e𝑆𝐼+
+

𝑐+,								𝑚	 ∈ 	 {𝑠𝑝𝑒, 𝑎𝑟𝑡, 𝑠𝑒𝑚} 

 
𝐶𝐼 is in the range of [0, 1], where higher values indicate stronger tuning for semantic features and 
lower values indicate stronger tuning for spectral features. 
 
Assessment of attentional modulations. In the second stage, we tested the passive-models on cock-
tail-data to quantify ROI-wise attentional modulation in selectivity for corresponding model features 
and to find the extent of the representation of unattended speech. These analyses were repeated 
separately for the three speech models.  
 

a) Model-specific attention index. To quantify the attentional modulation in selectivity for 
speech features, we compared prediction scores for attended versus unattended stories in the cock-
tail-party experiment. Models fit using passive-data were used to predict BOLD responses elicited by 
cocktail-stories. In each run, only one of the two speakers in a cocktail-story was attended while the 
other speaker was ignored. Separate response predictions were obtained using the isolated story stim-
uli for the attended and unattended speakers. Since a voxel can represent information on both at-
tended and unattended stimuli, a weighted linear combination of these predicted responses was con-
sidered:  
 

𝑅f = 𝑅a𝑤f + 𝑅h(1 − 𝑤f),  
 
Where 𝑅a and 𝑅h are the predicted responses for the attended and unattended stories in a given run; 
𝑅f  is the combined response and 𝑤f  is the combination weight. We computed 𝑅f  for each separate 
𝑤f  value in [0:0.1:1]. Note that 𝑅f = 𝑅a when 𝑤f = 1.0; and 𝑅f = 𝑅h when 𝑤f = 0.0. We then cal-
culated single-voxel prediction scores for each 𝑤f  value. An illustrative plot of 𝑟f 𝑟+a,⁄  vs 𝑤f  is given 
in Figure 3b, where  𝑟f  denotes the prediction scores and 𝑟+a, denotes the maximum 𝑟f  value (the 
optimal combination). 𝑟a and 𝑟h are the prediction scores for attended and unattended stories respec-
tively. To quantify the degree of attentional modulation, a model-specific attention index (𝐴𝐼+) was 
taken as:  
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m
+
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(𝑟+a,)+
∑ (𝑟+a,)YY

,					𝑚, 𝑖	 ∈ {𝑠𝑝𝑒, 𝑎𝑟𝑡, 𝑠𝑒𝑚}, 

 
where 𝑟+a, denotes an ideal upper limit for model performance, and 𝛼+ reflects the relative model 
performance under the cocktail-party task. Note that 𝐴𝐼+ considers selectivity to the underlying 
model features when calculating the degree of attentional modulation.  
 

b) Global attention index. We then computed global attention index (𝑔𝐴𝐼) as follows:  
 

𝑔𝐴𝐼 =e𝐴𝐼+,									𝑚	 ∈ 	 {𝑠𝑝𝑒, 𝑎𝑟𝑡, 𝑠𝑒𝑚}
+

 

 
Both 𝑔𝐴𝐼 and 𝐴𝐼+ are in the range [-1,1]. A positive index indicates attentional modulation of selec-
tivity in favor of the attended stimuli and a negative index indicates attentional modulation in favor 
of the unattended stimuli. A value of zero indicates no modulation. 
 
Statistical Tests 
 
Significance assessments within subjects. For each voxel-wise model, significance of prediction scores 
was assessed via a t-test; and resulting p-values were false-discovery-rate corrected for multiple com-
parisons (FDR; Benjamini and Hochberg 1995). 
 
A bootstrap test was used in assessments of 𝑆𝐼+, 𝐶𝐼, 𝐴𝐼+ and 𝑔𝐴𝐼 within single subjects. In ROI anal-
yses, speech-selective voxels within a given ROI were resampled with replacement 10000 times. For 
each bootstrap sample, mean prediction score of a given model was computed across resampled 
voxels. Significance level was taken as the fraction of bootstrap samples in which the test metric com-
puted from these prediction scores is less than 0 (for right-sided tests) or greater than 0 (for left-sided 
tests). The same procedure was also used for comparing pairs of ROIs, where ROI voxels were 
resampled independently.  
 
Significance assessments across subjects. A bootstrap test was used in assessments of 𝑆𝐼+, 𝐶𝐼, 𝐴𝐼+ 
and 𝑔𝐴𝐼 across subjects. In ROI analyses, ROI-wise metrics were resampled across subjects with re-
placement 10000 times. Significance level was taken as the fraction of bootstrap samples where the 
test metric averaged across resampled subjects is less than 0 (for right-sided tests) or greater than 0 
(for left-sided tests). The same procedure was also used for comparisons among pairs of ROIs.  
 

Results 
 
Attentional modulation of multi-level speech representations 
Recent electrophysiology (Ding and Simon 2012a, 2012b; Power et al. 2012; Zion Golumbic et al. 2013; 
Brodbeck et al. 2018b; O'Sullivan et al. 2019) and neuroimaging studies (Hill and Miller 2010; Wild et 
al. 2012; Regev et al. 2019) suggest that attention modulates cortical responses to speech during non-
spatial or spatial cocktail-party tasks. However, less is known regarding the cortical distribution and 
strength of these modulations for features involved in speech perception. To examine this issue, we 
first obtained a baseline measure of intrinsic selectivity for speech features. For this purpose, we fit 
voxelwise models using BOLD responses recorded during passive listening. Speech representations 
are thought to be organized hierarchically across multiple stages of processing in the brain, ranging 
from acoustic features in early auditory cortex to linguistic features in downstream areas (Davis and 
Johnsrude 2003; Hickok and Poeppel 2007; Okada et al. 2010; DeWitt and Rauschecker 2012; Bizley 
and Cohen 2013). To broadly examine this hierarchy, we built three separate models containing low-
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level spectral, intermediate-level articulatory and high-level semantic features of natural stories (de 
Heer et al. 2017). Supplementary Fig. S1 displays the cortical distribution of prediction scores for each 
model in a representative subject, and Supplementary Table S1 lists the number of significantly pre-
dicted voxels by each model in anatomical ROIs. We find spectrally-selective voxels mainly in early 
auditory regions (bilateral HG, HS and PT; and left pSF) and bilateral SMG, and articulatorily-selective 
voxels mainly in early auditory regions (bilateral HG, HS and PT; and left pSF), bilateral STG, STS, SMG 
and MFS as well as left POP and PreG. In contrast, semantically-selective voxels are found broadly 
across cortex except early auditory regions (bilateral HG and HS; and right PT).  
 
To quantitatively examine overlap among spectral, articulatory, and semantic representations in cor-
tex, we separately measured the degree of functional selectivity for each feature level via a model-
specific selectivity index (𝑆𝐼+; see Methods). Bar plots of selectivity indices are displayed in Supple-
mentary Fig. S2a for perisylvian cortex and in Supplementary Fig. S3 for non-perisylvian cortex. Several 
distinct selectivity profiles are observed from distributed selectivity for spectral, articulatory, and se-
mantic features (e.g., right SMG) to strong tuning to a single level of features (e.g., left IPS and AG). 
Cortical ROIs were separated into five characteristic groups based on their selectivity profiles (Supple-
mentary Fig. S2b). In Profile-1 (P1), both 𝑆𝐼abc and 𝑆𝐼_-` are dominant (p < 10-3); in P2 all indices are 
dominant (p < 10-4); in P3, 𝑆𝐼abc is dominant (p < 10-2); in P4, 𝑆𝐼abc and 𝑆𝐼_`+ are dominant (p < 0.05); 
and in P5, 𝑆𝐼_`+ is dominant (p < 0.05) (see Supplementary Table S2a for detailed significance tests). 
A progression from P1 to P4 is apparent while moving from primary auditory cortex to intermediate 
regions in temporal cortex, with P5 primarily manifesting in higher-order regions. To examine the hi-
erarchical organization of the speech representations in a finer scale, we also defined a complexity 
index, 𝐶𝐼 , that reflects whether an ROI is relatively tuned for low-level spectral or high-level semantic 
features. A detailed investigation of the gradients in 𝐶𝐼 across two main auditory streams (dorsal and 
ventral stream) was conducted (see Supplementary Results). These results corroborate the view that 
speech representations are hierarchically organized across cortex with partial overlap mostly in early 
and intermediate stages of speech processing.  
 
Next, we systematically examined attentional modulations at each level of speech representation dur-
ing a diotic cocktail-party task. To do this, we recorded whole-brain BOLD responses while participants 
listened to temporally-overlaid spoken narratives from two different speakers and attended to either 
a male or female speaker in these two-speaker stories. We used the spectral, articulatory, and seman-
tic models fit using passive-data to predict responses during the cocktail-party task. Since a voxel can 
represent information on both attended and unattended stimuli, response predictions were ex-
pressed as a convex combination of individual predictions for the attended and unattended story 
within each cocktail-story. Prediction scores were computed based on estimated responses as the 
combination weights were varied in [0 1] (see Methods). Scores for the optimal combination model 
were compared against the scores from the individual models for attended and unattended stories. If 
the optimal combination model significantly outperforms the individual models, it indicates that the 
voxel represents information from both attended and unattended stimuli. In contrast, if the optimal 
combination model performs similarly to the individual model for the attended story, the voxel does 
not represent significant information on the unattended story. 
 
Figure 4 displays prediction scores of the spectral, articulatory, and semantic models as a function of 
the combination weight in representative ROIs. Scores based on only attended story (𝑟a), based on 
only the unattended story (𝑟h), and based on the optimal combination of the two (𝑟+a,) are marked. 
A diverse set of attentional effects are apparent in HS, HG and PT. For the spectral model in left HS, 
the optimal combination puts matched weights to attended and unattended stories, while no signifi-
cant difference exists between 𝑟a and 𝑟h (p > 0.05). This finding implies that attention does not influ-
ence spectral representations in left HS. For the articulatory model in left HG,  𝑟a is larger than 𝑟h (p < 
10-4), while 𝑟+a, is greater than 𝑟a (p < 10-2). This result suggests that attention impacts articulatory 
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representations mildly in left HG such that articulatory representations of the unattended story are 
still maintained to an extent. For the semantic model in left PT, 𝑟a is greater than 𝑟h (p < 10-4), while 
no significant difference exists between 𝑟+a, and 𝑟a (p > 0.05). This finding indicates that attention 
affects semantic representations in left PT strongly such that no trace of semantic representations of 
unattended story is found. A simple inspection of these results suggests that attention may have dis-
tinct effects at various levels of speech representation across cortex. Hence, a detailed quantitative 
analysis is warranted to measure the effect of attention at each level. 
 
Level-specific attentional modulations. To quantitatively assess the strength and direction of atten-
tional modulations, we separately investigated the modulatory effects on spectral, articulatory, and 
semantic features across cortex. To measure modulatory effects at each feature level, a model-specific 
attention index (𝐴𝐼+) was computed, reflecting the difference in model prediction scores when the 
stories were attended versus unattended (see Methods). 𝐴𝐼+ is in the range of [-1, 1]; a positive index 
indicates selectivity modulation in favor of the attended stimulus, whereas a negative index indicates 
selectivity modulation in favor of the unattended stimulus. A value of zero indicates no modulation. 
 
Figure 5a and Supplementary Fig. S6 displays the attention index for the spectral, articulatory, and 
semantic models across perisylvian and non-perislyvian ROIs, respectively. Here we discuss the atten-
tion index for each model individually. Spectral modulation starts in HG (p < 0.01) bilaterally and ex-
tends to HS only in the right hemisphere (RH; p < 0.01). Articulatory modulation also starts as early as 
HG bilaterally (p < 10-4). In the dorsal stream, it extends to PreG and POP in the left hemisphere (LH) 
and to SMG in the right hemisphere (RH; p < 10-4). In the ventral stream, it extends to PTR and MTG 
bilaterally (p < 10-3). Articulatory modulation is also apparent -albeit generally less strong- in some 
frontal regions (bilateral IFS, MFG, MFS, SFG) and parietal regions (bilateral SPS, right PrC and SPS) (p 
< 0.05). In the dorsal stream, semantic modulation starts in PT and extends to POP and PreG in LH, 
whereas it only occurs in SMG in RH (p < 10-3). In the ventral stream, it extends from mSTG to MTG 
and PTR bilaterally (p < 0.01). Lastly, strong semantic modulation is observed widespread across 
higher-order regions within frontal, parietal, and occipital cortices (p < 0.01). Taken together, these 
results suggest that attending to a target speaker causes broad selectivity modulations distributed 
across cortex at the linguistic level (articulatory and semantic), yet modulations at the acoustic level 
(spectral) are primarily constrained to early auditory cortex. 
 
Attention is postulated to be a multi-level selection process that affects each stage of stimulus pro-
cessing disparately based on its intrinsic function (Kastner and Pinsk 2004). Previous studies on visual 
attention have reported that attention predominantly enhances representations in areas that are 
preferentially selective to target features (Maunsell and Treue 2006; Carrasco 2011). Thus, we hypoth-
esized that attending to a target speaker in a cocktail-story would manifest stronger modulations in a 
region for features that the ROI was preferentially selective for during passive listening. To test this 
hypothesis, we examined the dominant attention index across the three models within each ROI as 
shown in Figure 5b. Among ROIs with intrinsic selectivity profile P1 (dominant 𝑆𝐼_-` and 𝑆𝐼abc), 𝐴𝐼abc 
and 𝐴𝐼_-` are dominant in bilateral HG and right HS, whereas only 𝐴𝐼abc is dominant in left HS and 
pSF, and right PT (p < 0.01). For P2 (dominant 𝑆𝐼_-`, 𝑆𝐼abc and 𝑆𝐼_`+) and P4 (dominant 𝑆𝐼abc and 
𝑆𝐼_`+), 𝐴𝐼abc and 𝐴𝐼_`+ are dominant (p < 0.01; but see left aSTG where only 𝐴𝐼_`+ is dominant). For 
P3 (dominant 𝑆𝐼abc), 𝐴𝐼abc is dominant (p < 0.05). For P5 (dominant 𝑆𝐼_`+), 𝐴𝐼_`+ is dominant in all 
ROIs (p < 0.05) except for right IFS and left POP where both 𝐴𝐼_`+	and 𝐴𝐼abc are dominant (p < 10-4).  
 
To quantify the degree of similarity between the intrinsic selectivity and attentional modulation pro-
files, we further measured the cosine similarity between the selectivity and modulation vectors across 
the three models, 𝑆𝐼666⃗ = (𝑆𝐼_-`, 𝑆𝐼abc, 𝑆𝐼_`+) and 	𝐴𝐼6666⃗ = (𝐴𝐼_-`, 𝐴𝐼abc, 𝐴𝐼_`+) (see Supplementary Fig. 
S7). In all regions, the two vectors show strong similarity (r > 0.81, p < 10-4, bootstrap test). Correlation 
between the selectivity and modulation vectors is less strong in several regions including left HS and 
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right PT. The relatively lower correlation can be attributed to the lack of spectral modulation despite 
the intrinsic tuning for spectral features. Therefore, our results support the view that attention en-
hances speech representations to favor target features that each brain area is intrinsically selective 
for during passive listening, albeit this effect is relatively weaker at the spectral level. 
 
Global attentional modulations. It is commonly assumed that attentional effects grow stronger to-
wards higher-order regions across the cortical hierarchy of speech (Zion Golumbic et al. 2013; O'Sulli-
van et al. 2019; Regev et al. 2019). Yet, a systematic examination of attentional modulation gradients 
across dorsal and ventral streams is lacking. To examine this issue, we measured overall attentional 
modulation in each region via a global attention index (𝑔𝐴𝐼; see Methods). Similar to the model-spe-
cific attention indices, a positive 𝑔𝐴𝐼 indicates modulations in favor of the attended stimulus, and a 
negative 𝑔𝐴𝐼 indicates modulations in favor of the unattended stimulus.  
 

a) Dorsal stream. We first examined variation of 𝑔𝐴𝐼 across the dorsal stream (left dorsal-1: HGL 

à HSL à PTL à (SMGL) à POPL, left dorsal-2: HGL à HSL à PTL à (SMGL) à PreGL, and right dorsal: 
HGR à HSR àPTR à SMGR) as shown in Figure 6. We find significant increase in 𝑔𝐴𝐼 across the follow-
ing subtrajectories (p < 0.01): 𝑔𝐴𝐼op < 𝑔𝐴𝐼qE < 𝑔𝐴𝐼prs < 𝑔𝐴𝐼qtq and 𝑔𝐴𝐼op < 𝑔𝐴𝐼qE < 𝑔𝐴𝐼prs <
𝑔𝐴𝐼qb`s  in the left dorsal stream, and 𝑔𝐴𝐼qE < 𝑔𝐴𝐼prs  in the right dorsal stream. In contrast, we find 
no difference between HG and HS in the left dorsal stream (p > 0.05), and a significant decrease in 𝑔𝐴𝐼 
from HG to PT in the right dorsal stream (p < 0.05). These results suggest that attentional modulations 
grow progressively stronger across the dorsal stream in LH, whereas the modulation patterns are less 
consistent in the RH.  
 

b) Ventral stream. We then examined variation of 𝑔𝐴𝐼 across the ventral stream (left ventral-1: 
HGL à mSTGL à mSTSL à MTGL, left ventral-2: HGL à mSTGL à aSTGL à PTRL, right ventral-1: HGR à 
mSTGR  à mSTSR à MTGR and right ventral-2: HGR à mSTGR à aSTGR à PTRR), as shown in Figure 6. 
We find significant increase in 𝑔𝐴𝐼 across the following subtrajectories (p < 10-4): 𝑔𝐴𝐼os < 𝑔𝐴𝐼+pEs <
𝑔𝐴𝐼apEs  and 𝑔𝐴𝐼os < 𝑔𝐴𝐼+pEs < 𝑔𝐴𝐼+pEp in the left ventral stream, and 𝑔𝐴𝐼+pEs < 𝑔𝐴𝐼apEs  in the 
right ventral stream. In contrast, we find no difference between aSTG and PTR bilaterally, between 
mSTS and MTG in the left ventral stream, and between HG, mSTG, mSTS and MTG in the right ventral 
stream (p > 0.05). These results suggest that overall attentional modulations gradually increase across 
the ventral stream, and that the increases are more consistent in LH compared to RH.  
 

c) Representational complexity versus attentional modulation. Visual inspection of Supplemen-
tary Fig. S5b and Figure 6b suggests that the subtrajectories with significant increases in 𝐶𝐼 and in 𝑔𝐴𝐼 
largely overlap in LH. To quantitatively examine this overlap, we analyzed the correlation between CI 
and gAI across the subtrajectories where significant increases in 𝐶𝐼 are obtained. We find significant 
correlations in 𝐻𝑆	 → 	𝑃𝑇	 → 	𝑃𝑟𝑒𝐺 (r = 0.87, p < 10-4, bootstrap test), in 𝐻𝑆	 → 	𝑃𝑇	 → 	𝑆𝑀𝐺	 → 	𝑃𝑂𝑃 
(r = 0.84, p < 10-4 ), in 𝐻𝐺	 → 	𝑚𝑆𝑇𝐺	 → 	𝑚𝑆𝑇𝑆	 → 	𝑀𝑇𝐺 (r = 0.86, p < 10-4) and in 𝐻𝐺	 → 	𝑚𝑆𝑇𝐺	 →
	𝑎𝑆𝑇𝐺 (r = 0.99, p < 10-4). In line with a recent study arguing for stronger attentional modulation and 
higher representational complexity in STG compared to HG (O'Sullivan et al. 2019), our results indicate 
that attentional modulation increases towards higher-order regions as the representational complex-
ity increases across the dorsal and ventral streams in LH.  
 

d) Hemispheric asymmetries in attentional modulation. To assess potential hemispheric asym-
metries in attentional modulation, we compared 𝑔𝐴𝐼 between the left and right counterparts of each 
ROI. This analysis was restricted to ROIs with consistent selectivity for speech features in both hemi-
spheres in each individual subject (see Methods). Supplementary Table S3 lists the results of this 
across-hemisphere comparison. Among ROIs with selectivity profiles P1-P4, higher 𝑔𝐴𝐼 in LH is ob-
served for PT, aSTG, mSTG, aSTS, mSTS, pSTS, whereas higher 𝑔𝐴𝐼 in RH is apparent for HG (p < 0.05). 
For selectivity profile P5, higher 𝑔𝐴𝐼 in LH is observed for PTR, IFS and MFG, whereas higher 𝑔𝐴𝐼 in 
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RH is observed for IPS (p < 0.05). These results indicate that attentional modulations are right lateral-
ized in earlier stages of speech processing, whereas modulations are left lateralized in intermediate 
and higher stages (Xiang et al. 2010; Power et al. 2012; Brodbeck et al. 2018b); albeit lateralization is 
weaker towards later stages.  
 
Cortical representation of unattended speech  
An important question regarding multi-speaker speech perception is to what extent unattended stim-
uli are represented in cortex. Several neuroimaging studies on this topic have reported responses to 
the unattended speech stream in superior temporal cortex (Scott et al. 2004, 2009; Wild et al. 2012; 
Evans et al. 2016; Regev et al. 2019). While Wild et al. (2012) and Evans et al. (2016) have further 
suggested that the responses increase with the intelligibility of the unattended stream in parts of this 
area, the specific features and brain areas that mediate representation of unattended speech remain 
unclear. To address this question, here we investigated spectral, articulatory, and semantic represen-
tations of unattended stories during the cocktail-party task. We reasoned that if significant infor-
mation about unattended speech is represented in a brain region, then features of unattended speech 
should explain significant variance in measured BOLD responses. To test this, we compared the pre-
diction score of a combination model comprising the features of both attended and unattended sto-
ries (optimal convex combination) against the prediction score of an individual model comprising only 
the features of the attended story (see Methods). If the combination model significantly outperforms 
the individual model in an ROI, then the corresponding features of unattended speech are significantly 
represented in that ROI.  
 
Figure 7 displays prediction scores based on the features of only the attended story and the optimal 
convex combination of the attended and unattended stories for each ROI in the dorsal and ventral 
stream in RH (see Supplementary Fig. S9 for LH). Along the left (HG	 → 	HS	 → 	PT	 → 	SMG	 →
	(POP, PreG)) and right (HG	 → 	HS	 → 	PT	 → 	SMG) dorsal stream, spectral features of unattended 
speech are represented bilaterally up to SMG (p < 0.01), articulatory features are represented up to 
PT in LH and SMG in RH (p < 0.05), whereas no semantic representation is apparent (p > 0.05). Along 
the left ventral stream (HG	 → 	mSTG	 → 	mSTS	 → 	MTG and HG → mSTG → aSTG → PTR), spectral 
features are represented in HG (p < 10-4), and articulatory features are represented up to mSTG (p < 
0.05), again with no semantic representation (p > 0.05). In the right ventral stream (HG	 → 	mSTG	 →
	mSTS	 → 	MTG and HG → mSTG → aSTG → PTR), spectral features are represented up to aSTG and 
mSTS (p < 0.05), articulatory features are represented up to mSTG (p < 0.01), and semantic represen-
tations are found in mSTS (p < 0.05). These results indicate that cortical representations of unattended 
speech in multi-speaker environments extend from the spectral to the semantic level, albeit semantic 
representations are constrained to right parabelt auditory cortex (mSTS). Furthermore, representa-
tions of unattended speech are more broadly spread across the right hemisphere. Note that prior 
studies have reported response correlations and anatomical overlap between these belt/parabelt au-
ditory regions and the reorienting attention system in the right-hemisphere (Corbetta et al. 2008; 
Vossel et al. 2014; Puschmann et al. 2017). Therefore, relatively broader representations of unat-
tended speech in the right hemisphere might facilitate distractor detection and filtering during audi-
tory attention tasks. 
 

Discussion 
 
In this study, we investigated the effects of auditory attention on multi-level speech representations 
across cortex during a diotic and naturalistic cocktail-party task. To assess baseline selectivity for multi-
level speech features, we first fit spectral, articulatory, and semantic models using responses recorded 
during passive listening. We then quantified the complexity of intrinsic representations in each brain 
region. Next, we used fit models that reflect baseline selectivity for speech features to assess 
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attentional modulation of speech representations. To do this, responses predicted using stimulus fea-
tures of attended and unattended stories were compared with responses recorded during the cock-
tail-party task. This study is among the first to quantitatively characterize attentional modulations in 
multi-level speech representations of attended and unattended stimuli across speech-related cortex.  
 
Attentional Modulations 
The effects of auditory attention on cortical responses have been primarily examined in the literature 
using controlled stimuli such as simple tones, melodies and isolated syllables or words (Alho et al. 
1999; Jäncke et al. 2001, 2003; Lipschutz et al. 2002; Petkov et al. 2004; Johnson and Zatorre 2005; 
Degerman et al. 2006; Rinne et al. 2005, 2008, 2010; Woods et al. 2009, 2010; Paltoglou et al. 2009; 
Da costa et al. 2013; Seydell et al. 2014; Riecke et al. 2017). As such, less is known regarding how 
attention alters hierarchical representations of natural speech. Recent studies on this topic have re-
ported attentional modulations of low-level speech representations comprising acoustic and sub-lex-
ical features during the cocktail-party task (Ding and Simon 2012a, 2012b; Mesgarani and Chang 2012; 
Zion Golumbic et al. 2013; Puvvada and Simon 2017; Brodbeck et al. 2018b; Puschmann et al. 2019). 
Going beyond prior reports, here we find that attentional modulations are not solely constrained to 
the acoustic and sub-lexical levels but also extend to the higher semantic level. Importantly, attending 
to a male or female speaker categorically causes modulations at all examined feature levels embodied 
by the target stimulus. This finding is consistent with visual attention studies suggesting that category-
based attention influences selectivity for all subordinate features of a target visual object (O’Craven 
et al. 1999; Shinn-Cunningham 2008). 
 
Several prior studies have reported attentional response modulations for speech-envelope and spec-
trogram features in non-primary auditory cortex and even higher-order areas (Ding and Simon 2012a, 
2012b; Mesgarani and Chang 2012; Zion Golumbic et al. 2013). While our results indicate that atten-
tional modulations for articulatory and semantic representations distribute broadly across cortex, we 
find that modulations for spectral representations are mainly constrained to the primary auditory cor-
tex. Note that speech envelope and spectrogram features in natural speech carry intrinsic information 
about linguistic features including syllabic boundaries and articulatory features (Ding and Simon 2014; 
Liberto et al. 2015). These stimulus correlations can render it challenging to dissociate unique selec-
tivity for articulatory versus spectral features. To minimize biases from potential stimulus correlations, 
here we leveraged a decorrelation procedure to obtain orthogonal spectral, articulatory, and semantic 
feature matrices for the stimulus. The distinct modeling procedure for natural speech features might 
have contributed to the disparities between the current and previous studies on the cortical extent of 
spectral modulations.  
 
Attention is taken to be a multi-level selection process that affects each stage of stimulus processing 
uniquely based on its intrinsic functional selectivity (Kastner and Pinsk 2004). Here we first measured 
the selectivity profiles of brain areas across three distinct features spaces, from spectral to semantic. 
We also measured attentional modulations profiles across the same set of feature spaces. A compar-
ison of the selectivity and attentional modulation profiles reveals that attention enhances speech rep-
resentations to predominantly favor features that each brain area is intrinsically selective for. This 
finding is consistent with recent studies on auditory attention reporting in primary auditory cortex 
that the strongest response modulations occur in populations that are preferentially selective to the 
target feature (Paltoglou et al. 2009; Da Costa et al. 2013; Riecke et al. 2017).  
 
An important question regarding auditory attention is how the strength of attentional affects are dis-
tributed across cortex. A common view is that attentional modulations grows relatively stronger to-
wards later stages of processing (Golumbic et al. 2013). Recent studies support this view by reporting 
bilaterally stronger modulations in frontal versus temporal cortex (Regev et al. 2019) and in non-pri-
mary versus primary auditory cortex (O'Sullivan et al. 2019). Adding to this body of evidence, we 
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further show that attentional modulations gradually increase across the dorsal and ventral streams in 
the left hemisphere, as the complexity of speech representations grow. While a similar trend is ob-
served across the right hemisphere, several exceptions are reported in belt and parabelt auditory re-
gions including PT where the gradient in attentional modulation is less consistent. Furthermore, at-
tentional modulations are weaker in the right versus left hemisphere across these auditory regions. 
Note that belt and parabelt regions are suggested to be connected to the right temporo-parietal junc-
tion (TPJ) during selective listening (Puschmann et al. 2017). TPJ is one of the central nodes in the 
reorienting attention system that monitors salient events to filter out distractors and help maintaining 
focused attention (Corbetta and Schulman 2002; Corbetta et al. 2008; Vossel et al. 2014). Hence less 
consistent gradients and relatively weaker attentional modulations in belt and parabelt auditory re-
gions in the right hemisphere might suggest a functional role in detecting salient events in the unat-
tended stream during selective listening tasks. 
 
Representation of the unattended speech 
Whether unattended speech is represented in cortex during selective listening and if so, at what fea-
ture levels its representations are maintained are crucial aspects of auditory attention. Behavioral 
accounts suggest that unattended speech is primarily represented at the acoustic level (Cherry 1953; 
Broadbent 1958). Corroborating these accounts, recent electrophysiology studies have identified 
acoustic representations of unattended speech localized to auditory cortex (Ding and Simon 2012a, 
2012b; Zion Golumbic et al. 2013; Puvvada and Simon et al. 2017; Brodbeck et al. 2018b; O’Sullivan et 
al. 2019; Puschman et al. 2019). In contrast, here we find that acoustic representations of unattended 
speech extend beyond the auditory cortex as far as SMG in the dorsal stream. Because SMG partly 
overlaps with the reorienting attention system, unattended speech representations in this region 
might contribute to filtering of distractors during the cocktail-party task (Corbetta et al. 2008; Vossel 
et al. 2014). 
 
A more controversial discussion is focused on whether unattended speech representations carry in-
formation at the linguistic level (Driver 2001; Lavie 2005; Boulenger et al. 2010; Bronkhorst 2015; Kidd 
and Colburn 2017). Prior studies on this issue are split between those suggesting the presence (Wild 
et al. 2012; Evans et al. 2016) versus absence (Sabri et al. 2008; Brodbeck et al. 2018b) of linguistic 
representations. Here, we find that articulatory representations of unattended speech extend to 
belt/parabelt auditory areas in the left dorsal and right ventral stream, and to inferior parietal cortex 
in the right dorsal stream. We further find semantic representation of unattended speech in the right 
ventral stream (mSTS). These linguistic representations of unattended speech are naturally weaker 
than those of attended speech, and they are localized to early-to-intermediate stages of auditory pro-
cessing. Our findings suggest that unattended speech is represented at the linguistic level prior to 
entering the broad semantic system where full selection of the attended stream occurs (Bregman 
1994; Pulvermüller and Shtyrov 2006; Relander et al. 2009; Näätänen et al. 2011; Rämä et al. 2012; 
Bronkhorst 2015; Ding et al. 2018). Overall, these linguistic representations might serve to direct ex-
ogenous triggering of attention to salient features in unattended speech (Moray 1959; Treisman 1960, 
1964; Wood and Cowan 1995; Driver 2001; Bronkhorst 2015). Meanwhile, attenuated semantic rep-
resentations in the ventral stream might facilitate semantic priming of the attended stream by rele-
vant information in the unattended stream (Lewis 1970; Driver 2001; Rivenez et al. 2006). 
 
Conclusion 
In sum, our results indicate that attention during a naturalistic cocktail-party task gradually selects 
attended over unattended speech across both dorsal and ventral processing pathways. This selection 
is mediated by representational modulations extending from acoustic to linguistic features, where 
strongest modulations at each stage of processing occur for features that the stage is intrinsically se-
lective for. Despite broad attentional modulations in favor of the attended stream, we still find that 
unattended speech is represented up to linguistic level in the regions that overlap with the reorienting 
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attention system. These linguistic representations of unattended speech might facilitate attentional 
reorienting and filtering during natural speech perception. Overall, our findings provide comprehen-
sive insights on attentional mechanisms that underlie the ability to selectively listen to a desired 
speaker in noisy multi-speaker environments. 
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Figure 1: Experimental design. a. Passive-listening experiment. 10 stories from Moth-Radio-Hour were used to compile a 
single-speaker stimulus set (passive-stories). Subjects were instructed to listen to the stimulus vigilantly without any explicit 
task in the passive-listening experiment. b. Cocktail-party experiment. A pair of stories told by individuals of different genders 
were selected from the passive-story stimulus set and overlaid temporally to generate a two-speaker stimulus set (cocktail-
stories). Subjects were instructed to attend either to the male or female speaker in the cocktail-party experiment. The same 
cocktail-story was presented twice in separate runs while the target speaker was varied. Attention condition was fixed within 
runs and it alternated across runs.  
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Figure 2:  Multi-level speech features. Three distinct feature spaces were constructed to represent natural speech at multi-
ple levels: namely spectral, articulatory, and semantic spaces. Speech waveforms were projected separately on these spaces 
to form stimulus matrices for each feature space. As such, the spectral feature matrix captured the spectral power density 
of the stimulus in 300 50-Hz bands between 0 and ~15 kHz. The articulatory feature matrix captured the mapping of each 
phoneme in the stimulus to 22 binary articulation features. The semantic feature matrix captured the statistical co-occur-
rences of each word in the stimulus with 985 common words in English. Each feature matrix was Lanczos-filtered at a cutoff 
frequency of 0.25 Hz and downsampled to 0.5 Hz to match the sampling rate of fMRI. Natural speech might contain intrinsic 
stimulus correlations among spectral, articulatory, and semantic features. If substantial, these correlations can in turn bias 
estimates of feature selectivity. To prevent potential biases, we decorrelated the three feature matrices examined here via 
Gram-Schmidt orthogonalization (see Methods). Taking the articulatory feature matrix as a reference, articulatory features 
were regressed out of the spectral feature matrix, and both articulatory and spectral features were regressed out of the 
semantic feature matrix. While spectral features are presumably lower level than articulatory features, the articulatory fea-
ture matrix with orders of magnitude lower number of features was taken as reference to minimize accumulation of numer-
ical errors.  
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Figure 3: Analysis procedures. a. Voxelwise modeling. Voxelwise models were fit in individual subjects using passive-data. 
To account for the temporal characteristics of the hemodynamic response, a linearized four-tap finite impulse response (FIR) 
filter was used; and each model feature was represented as four features in the stimulus matrix to account for their delayed 
effects in BOLD responses at 2-8 sec. Model weights were found using L2-regularized linear regression. BOLD responses were 
predicted based on fit voxelwise models on held-out passive-data. Prediction scores were taken as the Pearson’s correlation 
between predicted and measured BOLD responses. For a given subject, speech-selective voxels were taken as the union of 
voxels significantly predicted by spectral, articulatory, or semantic models (q(FDR) < 10-4, t-test). b. Assessment of attentional 
modulation. Passive-models for single voxels were tested on cocktail-data to quantify attentional modulations in selectivity 
for corresponding model features. In a given run, one of the two speakers in a cocktail-story was attended while the other 
speaker was ignored. Separate response predictions were obtained using the isolated story stimuli for the attended speaker 
and for the unattended speaker. Since a voxel can represent information from both attended and unattended stimuli, a 
linear combination of these predicted responses was considered with varying combination weights (wc in [0 1]). BOLD re-
sponses were predicted based on each combination weight separately. Three separate prediction scores were calculated 
based on only the attended stimulus (wc=1), based on only the unattended stimulus (wc=0), and based on the optimal com-
bination of the two stimuli. A model-specific attention index, (𝐴𝐼!) was then computed as the ratio of the difference in 
prediction scores for attended versus unattended stories to the prediction score for their optimal combination (see Meth-
ods).  
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Figure 4: Predicting responses measured during the cocktail-party task. Passive-models were tested during the cocktail-
party task by predicting BOLD responses in the cocktail-data. Since a voxel might represent information from both attended 
and unattended stimuli, response predictions were expressed as a convex combination of individual predictions for the at-
tended and unattended story within each cocktail-story. Prediction scores were computed as the combination weights (𝑤") 
were varied in [0 1] (see Methods). Prediction scores for a given model were averaged across speech-selective voxels within 
each ROI (𝑟"). The normalized scores of spectral, articulatory, and semantic models are displayed as a function of the combi-
nation weight in several representative ROIs (HS, HG and PT, respectively). Solid and dashed lines indicate mean and %95 
confidence intervals across subjects. Scores based on only the attended story (𝑟#), based on only the unattended story (𝑟$), 
and based on the optimal combination (𝑟!#%) are marked with circles. For the spectral model in left HS, the optimal combi-
nation equally weighs attended and unattended stories, while no significant difference exists between 𝑟# and 𝑟$ (p > 0.05, 
bootstrap test). This result implies that attention does not affect spectral representations in left HS. For the articulatory 
model in left HG, 𝑟# is larger than 𝑟$ (p < 10-4), while 𝑟!#% is greater than 𝑟# (p < 10-2). This finding suggests that attention 
moderately impacts articulatory representations in left HG such that articulatory representations of the unattended story 
are still maintained. For the semantic model in left PT, 𝑟# is greater than 𝑟$ (p < 10-4), while no significant difference exists 
between 𝑟!#% and 𝑟# (p > 0.05). This finding indicates that attention strongly biases semantic representations in left PT 
towards the attended stimulus. These representative results imply that attention may have divergent effects at various levels 
of speech representations across cortex.   
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Figure 5: Attentional modulations for multi-level speech features. a. Model-specific attention indices. To quantify 
modulatory effects on selectivity for multi-level speech features, model-specific attention index (𝐴𝐼!) was computed based 
on the difference in model prediction scores when the stories were attended versus unattended (see Methods). 𝐴𝐼! is in 
the range of [-1,1], where a positive index indicates attentional modulation in favor of the attended stimuli and a negative 
index indicates modulation in favor of the unattended stimuli. A value of zero indicates no modulation. Blue, red, and green 
bar plots display spectral, articulatory, and semantic attention indices, respectively (mean ± sem across subjects). The sum 
of the three indices gives the overall modulation; hence, the relative values of indices represent the composition of overall 
modulation in terms of the underlying feature spaces (see Methods). Significant modulations are marked with *, colored 
according to the corresponding metric (p < 0.05, bootstrap test; see legend; also see Supplementary Table S2b for detailed 
results). Only ROIs in the perisylvian cortex where a speech-related fronto-temporo-parietal network resides (Friederici 2011) 
are displayed (see Supplementary Fig. S6 for non-perisylvian ROIs). ROIs in the LH and RH are shown in top and bottom 
panels, respectively. POPR and PreGR that did not have consistent speech selectivity in individual subjects were excluded (see 
Methods) These results show that selectivity modulations distribute broadly across cortex at the linguistic level (articulatory 
and semantic), yet modulations at the acoustic level (spectral) are primarily constrained to early auditory cortex. b. 
Attentional modulation profiles. Modulation profiles of cortical ROIs averaged across subjects are displayed on the flattened 
cortical surface of a representative subject (S4). Medial and lateral views of the inflated hemispheres are also shown above 
and below the flatmap. White lines encircle ROIs that are found based on an automatic atlas-based cortical parcellation. 
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Labels of ROIs are shown (see Methods for ROI abbreviations). This analysis only included ROIs with consistent selectivity for 
speech features in each individual subject (see Methods). Colors indicate the modulation profiles based on dominant 𝐴𝐼! 
(see legend). The distribution of model-specific attentional indices (𝐴𝐼!) across spectral, articulatory, and semantic models 
were examined and compared to the selectivity profiles of the ROIs (see Supplementary Fig. S2 for intrinsic selectivity 
profiles). Among ROIs with intrinsic selectivity profile P1, 𝐴𝐼#&' and 𝐴𝐼()* are dominant with exception in left HS and pSF, 
and right PT where 𝐴𝐼#&' is dominant. For P2 and P4, 𝐴𝐼#&' and 𝐴𝐼(*! are dominant with exception in aSTG where only 𝐴𝐼(*! 
is dominant. For P3, 𝐴𝐼#&' is dominant. For P5, 𝐴𝐼(*! is dominant with exception in right IFS and left POP where both 
𝐴𝐼(*!	and 𝐴𝐼#&' are dominant (see Supplementary Table S2b for detailed results). Overall, the intrinsic selectivity and 
attentional modulation profiles display largely matching distributions across cortex (exceptions are marked with *; see 
Supplementary Fig. S7 for statistical assessments). Exceptions are mainly attributed to the lack of spectral modulation outside 
early auditory cortex. These results support the view that attention enhances speech representations to favor target features 
that each brain area is intrinsically selective for, albeit this effect is relatively weaker at the spectral level.  
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Figure 6: Global attentional modulation. a. Global attention index and auditory pathways. To quantify overall modulatory 
effects on selectivity across all examined feature levels, global attentional modulation (𝑔𝐴𝐼) was computed by summing 
spectral, articulatory, and semantic attention indices (see Methods). 𝑔𝐴𝐼 is in the range of [-1,1], where a positive index 
indicates attentional modulation in favor of the attended stimuli and a negative index indicates modulation in favor of the 
unattended stimuli. A value of zero indicates no modulation. Colors indicate 𝑔𝐴𝐼 averaged across subjects (see legend; see 
Supplementary Fig. S8 for bar plots of 𝑔𝐴𝐼 across cortex) To illustrate the gradients in 𝑔𝐴𝐼 across the hierarchy of speech 
processing, dorsal and ventral pathways are shown with blue and green lines, respectively. Squares mark the region where 
the pathway begins; arrows mark the region where the pathway ends; and circles mark the relay regions in between. Dorsal 
pathway comprises three trajectories: left dorsal-1 (LD-1: HGL à HSL à PTL à SMGL à POPL), left dorsal-2 (LD-2: HGL à HSL 

à PTL à SMGL à PreGL) and right dorsal (RD: HGR à HSR à PTR à SMGR). Ventral pathway comprises four trajectories: left 
ventral-1 (LV-1: HGL à mSTGL à mSTSL à MTGL), left ventral-2 (LV-2: HGL à mSTGL à aSTGL à PTRL), right ventral-1 (RV-
1: HGR à mSTGR  à mSTSR à MTGR) and right ventral-2 (RV-2: HGR à mSTGR à aSTGR à PTRR). b. Modulation hierarchies. 
Gradients in 𝑔𝐴𝐼 across left dorsal-1 and dorsal-2, right dorsal, left ventral-1 and ventral-2, and right ventral-1 and ventral-2 
trajectories are shown in subfigures labeled accordingly. Bar plots display 𝑔𝐴𝐼 in each ROI (mean ± sem across subjects). 
Only ROIs within a given trajectory are included in the corresponding subfigure. Significant differences in 𝑔𝐴𝐼 between con-
secutive ROIs along the trajectory are marked with brackets (p < 0.05, bootstrap test; see Table S2d for detailed results). 
Significant gradients in 𝑔𝐴𝐼 are: 𝑔𝐴𝐼+, < 𝑔𝐴𝐼-. < 𝑔𝐴𝐼,/0 < 𝑔𝐴𝐼-1- in left dorsal-1, 𝑔𝐴𝐼+, < 𝑔𝐴𝐼-. < 𝑔𝐴𝐼,/0 < 𝑔𝐴𝐼-&*0  
in left dorsal-2, 𝑔𝐴𝐼-. < 𝑔𝐴𝐼,/0  and 𝑔𝐴𝐼+0 	> 𝑔𝐴𝐼+, > 𝑔𝐴𝐼-. in right dorsal, 𝑔𝐴𝐼+0 < 𝑔𝐴𝐼!,.0 < 𝑔𝐴𝐼!,., in left ventral-
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1, 𝑔𝐴𝐼+0 < 𝑔𝐴𝐼!,.0 < 𝑔𝐴𝐼#,.0  in left ventral-2, and 𝑔𝐴𝐼!,.0 < 𝑔𝐴𝐼#,.0  in right ventral-2. These results indicate that in 
the left hemisphere, 𝑔𝐴𝐼 gradually increases from early auditory regions to higher-order regions across the dorsal and ventral 
pathways. Furthermore, the gradients in 𝑔𝐴𝐼 mostly overlap with the gradients in 𝐶𝐼 (r > 0.84, p < 10-4, bootstrap test; see 
Supplementary Fig. S5 for gradients in 𝐶𝐼). Similar patterns are also observed in the right hemisphere, although the gradients 
in 𝑔𝐴𝐼 are less consistent. These results suggest that, with growing representational complexity, attentional modulation also 
grows stronger across the cortical hierarchy of speech.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.05.412957doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.05.412957


 
Figure 7: Representation of unattended speech. Passive models were tested on cocktail-data to assess representation of 
unattended speech during the cocktail-party task. Prediction score of a combination model comprising the features of both 
attended and unattended stories (𝑟!#%: optimal convex combination) and prediction score of an individual model comprising 
only the features of the attended story (𝑟#) were computed (see Methods). Significant differences between the two predic-
tion scores indicate that BOLD responses within the ROI carry significant information on unattended speech. Bar plots display 
normalized prediction scores (mean ± sem across subjects) for the optimal convex combination (light gray) and the attended 
story (gray). Significant scores are marked with * (p < 10-4, bootstrap test). Brackets indicate significant differences between 
the two scores (p < 0.05). Prediction scores are only displayed for ROIs in the right dorsal and ventral stream, with significant 
selectivity for corresponding model features (see Fig. S9 for left hemisphere). a. Spectral representation. Spectral represen-
tations of unattended speech extend up to SMG along the dorsal stream (HG	 → 	HS	 → 	PT	 → 	SMG	)	and up to mSTS and 
aSTG along the ventral stream (HG	 → 	mSTG	 → 	mSTS	 → 	MTG and HG → mSTG → aSTG → PTR). b. Articulatory repre-
sentation. Articulatory representations of unattended speech extend up to SMG along the dorsal stream, and up to mSTG 
along the ventral stream. c. Semantic representation. Semantic features are represented only in mSTS. These results suggest 
that processing of unattended speech is not constrained at spectral level but extends to articulatory and semantic level.  
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