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ABSTRACT 
 
The dorsal raphe nucleus (DRN) is an important source of serotonin in the brain 
but fundamental aspects of its function remain elusive. Here, we present a 
combination of minimally invasive recording and disruption studies to show 
that DRN brings about changes in motivation states. We use recently developed 
methods for identifying temporal patterns in behaviour to show that monkeys 
change their motivation depending on the availability of rewards in the 
environment. Distinctive patterns of DRN activity occur when monkeys 
transition between a high motivation state occupied when rewards are 
abundant, to a low motivation state engendered by reward scarcity. Disrupting 
DRN diminishes sensitivity to the reward environment and perturbs transitions 
in motivational states. 
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INTRODUCTION 
 
Animals need rewards for their survival, and they need to obtain them as efficiently as 
possible. In many naturalistic scenarios, this means tracking general features of the 
surrounding environment: foraging behaviour in many species, for example, involves 
comparing the opportunity an animal is currently confronted with against the general 
richness and stochasticity of opportunities it has encountered in the recent past, which 
guide its expectations for the future1,2. These are rational considerations for animals 
given the biological constraints that encumber them. Finding and pursuing rewards 
consumes precious metabolic resources that must later be replenished, and so it is 
critical that animals organise their reward-seeking activities in ways that exploit their 
external milieu – to press their advantage when things are good, and conserve their 
energy when things are bad. 

How does the brain reconcile motivation for rewards with the environment in 
this way? Here, we argue for a critical role for the dorsal raphe nucleus (DRN) – a 
phylogenetically ancient part of the brainstem that is distinguished by its serotonergic 
innervation of the mammalian forebrain3–6. Although fundamental aspects of DRN’s 
function remain elusive, recordings of its activity during decision-making are beginning 
to cohere into two major themes: (i) that DRN controls changes in an animal’s 
behaviour7–14, and (ii) that DRN responds to reward-related features of an animal’s 
milieu, like the value, valence and uncertainty of recent outcomes15–23.  

We build on previous work in arguing that DRN controls transitions between 
motivational states that reconcile an animal’s behaviour with the distribution of rewards 
in its environment. We develop a novel behavioural paradigm which demonstrates that 
rhesus monkeys are more motivated to pursue rewards that occur in rich environments 
with many high-value opportunities. We implement recent innovations in quantitative 
modelling to show that this pattern is explicable by state-like changes in an animal’s 
motivation that are consonant with the current distribution of rewards in the 
environment. We take advantage of the whole-brain perspective afforded by functional 
magnetic resonance imaging (fMRI) to show that brain activity in DRN – but no other 
neuromodulatory nucleus – covaries with transitions in motivation-states as well as the 
aspects of the environment on which they depend. Finally, we show that DRN is 
causally involved in motivational-state transitions by modulating neural activity with 
minimally invasive transcranial ultrasound stimulation24,25. In doing so, we provide the 
first demonstration that minimally invasive modulation of DRN is possible, and a new 
perspective on DRN’s behavioural function. 
 
RESULTS 
 
Motivation for rewards is modulated by the environment 
 
Four rhesus monkeys (Macaca mulatta) performed a simple decision-making task 
involving sequential encounters with reward opportunities that varied in reward-
magnitude and reward-probability (fig. 1A). Upon each encounter animals could either 
pursue the opportunity and incur a short temporal cost or let the opportunity pass and 
proceed to the next encounter. Each session comprised four blocks of 40-50 trials. We 
systematically controlled the distribution of reward-probabilities within blocks to 
engender different reward environments. These environments varied on two 
dimensions: (1) richness, defined by the mean reward-probability of opportunities– i.e., 
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the value of an average opportunity in a block, and (2) stochasticity, defined as trial-
to-trial variability in reward-probability, and implemented by changing the width of 
reward-probability distributions (fig. 1B & 1C; see Methods for details). 

We first examined whether animals changed their behaviour in response to the 
environment. We reasoned that knowledge of the environment would derive from an 
animal’s reward history and therefore operationalised the environment’s richness as 
the average reward accumulated in the previous five trials and its stochasticity as the 
standard deviation of the reward rate (fig. 1D). We selected a five-trial window because 
each individual animal showed sensitivity to individual reward outcomes up to five trials 
into the past (see supplementary figure S1B). We quantified the impact of reward 
environments on motivation with a series of binomial general linear models (GLM) in 
which motivation for rewards was conceived as the binomial likelihood of pursuing a 
reward opportunity. This revealed that animals were more likely to pursue 
opportunities as the environment’s richness and stochasticity increased (GLM1.1, see 
Methods; βenvironment-richness=0.46, SE=0.08, p<.001; fig.1E; see also supplementary 
figure S1A & S1C; βenvironment-stochasticity=0.08, SE=0.03, p=.020; fig.1F; see also 
supplementary figure S1D). These effects obtained independently of trial-by-trial 
reward value – for example, opportunities with the same expectation-value were more 
likely to be pursued in rich relative to poor environments, meaning that the 
environment effect was not an artefact of specific reward opportunity values on the 
current trial (fig.1E & 1F; see also supplementary figure S1A & C–D).   

This analysis gestured toward a subtle but important feature of behaviour: 
animals could only obtain rewards by pursue-responses, and so the association 
between receiving rewards in the past and pursuing rewards in the present implied 
that behaviour was autocorrelated. We quantified this by regressing the pursue/reject 
decision taken on each trial against the corresponding decision on the previous trial 
(behavioural history, hence). This confirmed that animals were apt to repeat 
pursue/reject decisions over consecutive trials, despite trials featuring separate 
reward opportunities with distinct magnitude and probability parameters (GLM1.2; 
βbehavioural-history=0.90, SE=0.24, p<.001; fig.1G). Although behavioural history and 
richness of the environment were correlated (r=0.43), they constituted separate and 
distinctive effects on behaviour according to a binomial GLM featuring both predictors 
(GLM1.3; βrichness=0.54, SE=0.08, p<.001; βbehavioural-history=0.58 SE=0.21, p=.005). This 
GLM revealed, moreover, an interaction whereby behavioural history’s influence 
diminished as the richness of the environment increased (GLM1.3; β=-0.33, SE=0.11, 
p =.002; fig.1H). This suggests that animals experienced time-varying predispositions 
to either to pursue or reject opportunities, and that their tendency to behave in either 
manner depended on the distribution of rewards in the recent past.  
 
A Hidden Markov Model identifies motivation-states in behaviour 
We reasoned that these behavioural patterns reflected changes in internal motivation-
states – that is, changes in an animal’s intrinsic propensity to pursue rewards 
independent of the value of the opportunity currently at stake (fig.2A–B). We tested 
this hypothesis with a General Linear Model Hidden Markov Model (GLM-HMM), a 
newly established technique for identifying temporal patterns in behaviour26,27.  GLM-
HMMs extend the classical GLM by allowing parameter values to change over time-
varying latent states. Transitions between latent states are governed by Markovian 
dynamics and are thus called ‘HMM-states’. In simple terms, thus, the technique 
amounts to decomposing behaviour with a series of GLMs with the same set of 
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predictors, but in which the weights on predictors take different values at different 
points in time.  

We formulated a GLM-HMM where decisions were predicted with binomial 
GLMs parameterised by: (i) a bias or ‘intercept’ term, (ii) a predictor for the expectation-
value of the reward opportunity available on each trial, and (iii) predictors for external 
environment cues that were presented throughout the task (fig.2B; see methods for 
details). Per above, our focus was motivation-states corresponding to changes in an 
animal’s intrinsic drive for reward, as distinct from changes driven by external 
circumstances like the reward value at stake on a given trial. We therefore held the 
weights for predictors that described experimentally controlled aspects of the task 
constant and let only the bias parameters change between HMM-states. This 
configuration, we reasoned, was the best way of capturing autocorrelated patterns in 
behaviour whereby opportunities were pursued more frequently during periods of 
recent reward pursuit and accumulation.  

We used a previously reported model-selection procedure which involved 
testing models with different numbers of HMM states using 5-fold cross validation26 
(see supplementary figure S2A for details). We first validated the procedure using a 
series of parameter recovery tests (see supplementary figure S3A–C) before 
implementing it on behavioural data. This indicated that cross-validated log-likelihoods 
for 2-state GLM-HMMs were higher than 1-state GLM-HMMs for all animals (fig.2C; 
see supplementary figure S2A for full cross validation and S2B-D for further 
information), and we therefore used 2-state GLM-HMMs for all further analyses. 
Importantly, the 2-state GLM-HMMs for all animals featured clearly distinct state-
specific bias parameters (fig.2D) and profoundly autocorrelated HMM-state transition 
matrices, which were consistent with state-like fluctuations in motivation for reward 
pursuit (fig.2E). Simulating data from fitted 2-state GLM-HMMs, moreover, reproduced 
key features of animal behaviour including richness of the environment and 
behavioural history effects (supplementary figure S2H–I), and qualitative patterns of 
autocorrelation in behaviour (supplementary figure S2E–G). Further analyses 
demonstrated that HMM-states were not simply reducible to satiety, fatigue, or time-
on-task (S2B & S2D).  

We tested the link between statistical HMM-states and biological motivation-
states with a series of follow-up analyses. Firstly, we quantified differences in 
behaviour between HMM-states by decoding the maximum a posteriori HMM-state on 
each trial using a procedure that was validated on simulated data (correct HMM-state 
identified on 90% of trials; HMM-state transitions identified within +/- 3 trials of a true 
transition in 85% of cases; see supplementary figure S3). As expected, animals were 
markedly more likely to pursue reward opportunities in the putative high-motivation 
state compared to the low-motivation state regardless of the reward value available 
(GLM2.1; βmotivation-level=2.64, SE=0.55, p<.001; fig.2F). Behaviour during transitions 
between HMM-states was characterised by abrupt changes in pursue-rates, 
suggesting that the GLM-HMM captured state-like differences in behaviour with a high 
degree of temporal precision (GLM2.2; βbefore-vs-after-transition(high-to-low)=-1.47, SE=0.09, 
p<.001; βbefore-vs-after-transition(low-to-high)=1.80, SE=0.30, p<.001, fig.2G). Finally, we 
established the model’s convergent validity by comparing HMM-states to: (i) trial-by-
trial pupil-size, a well-validated indicator of physiological arousal28, and (ii) trial-by-trial 
reaction times (RT) on pursuit trials, a simple way of quantifying vigour. Consistent 
with the motivation-state view, putative high-motivation states featured faster RTs for 
pursue-decisions (GLM2.3; βmotivation-level=-0.20, SE=0.03, p<.001; fig.2I) and increases 
in pupil-diameter during decision-making (GLM2.4; βmotivation-level=0.20, SE=0.02, 
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p<.001; fig.2H). The GLM-HMM, thus, provided quantitative evidence for discrete, 
persistent, and biologically meaningful internal motivation-states in monkey behaviour.  

We next asked how motivation-states were related to the external environment: 
was it the case, for example, that an animal’s intrinsic motivation was shaped by the 
distribution of rewards in its milieu? We quantified the availability of rewards by 
calculating, for each trial, the average expectation-value of reward opportunities in the 
preceding five trials. Importantly, the expectation value of reward opportunities was 
experimentally controlled via the reward distributions characterising the task (fig.1B) 
and was therefore not affected by an animal’s decisions. Animals were, indeed, more 
likely to occupy high-motivation states as the expected-value of recent opportunities 
increased (GLM2.5; βAve.EV=0.19, SE=0.09, p=.026; fig.2J) and visualising the 
expectation-value of rewards during transition points showed corresponding patterns, 
whereby high-to-low transitions occurred when average values decreased and vice 
versa for low-to-high transitions (fig.2K).  The GLM-HMM therefore demonstrated not 
just that animals experienced state-like changes in motivation for rewards, but that 
these states were reconciled with the distribution of rewards in the world around them.   
 
Brain activity in DRN reflects an animal’s reward environment and changes in 
its motivation state 
 
Animals performed the task under fMRI. Our analysis of fMRI recordings focused on 
a priori regions of interest (ROI; see fig. S4) comprising the ascending 
neuromodulatory systems (ANS) – an assemblage of phylogenetically ancient nuclei 
which includes the serotonergic DRN, in addition to the dopaminergic ventral 
tegmental area (VTA) and substantia nigra (SN), the cholinergic nucleus basalis (NB), 
and the noradrenergic locus coeruleus (LC). We also examined habenula (Hb) – an 
epithalamic nucleus with diverse subcortical connections that interact with the ANS in 
a reciprocal fashion29,30. Broadening our analysis beyond DRN provided a comparative 
perspective on its function, which is valuable given that reward functions are 
sometimes jointly attributed to different subcortical nuclei – the richness of the 
environment, for example, has been linked to both VTA and DRN related signals19–

21,31–37, while various forms of reward uncertainty have been ascribed to DRN, LC and 
the cholinergic basal forebrain alike15,38–42. fMRI’s wholistic perspective enabled us to 
address this by comparing signals in DRN and other ANS nuclei24. This was 
accomplished with a novel suite of fMRI acquisition and pre-processing methods that 
optimised blood oxygen level dependent (BOLD) signal from subcortical regions and 
minimised artefacts and noise sources for midbrain and brainstem regions (see 
Acquisition, reconstruction and pre-processing of MRI data in Methods).   

We first examined the links between brain activity and the reward environment 
during the pursue/reject decision made on each trial (GLM3.2; Methods). Due to the 
correlation between the richness of the environment and behavioural history, we 
separately analysed trials in which the previous encounter was pursued and rejected, 
respectively.  This indicated that brain activity in DRN negatively correlated with the 
richness of the environment after rejection of opportunities (one-sample t-test; 
GLM3.2; tDRN; rejected(58)=-2.80, p =.034; tDRN; pursued(58)=-0.37, p=.713  after Bonferroni 
correction for multiple comparisons, as are all subsequent t-tests; fig.3A & 3B; see 
also fig.3A top panel for effect of richness of the environment in all trials; see fig.3 
legend for further timing of BOLD signal). In contrast, VTA activity was prominent 
following opportunity pursuits while Hb exhibited aspects of both DRN and VTA 
patterns. Despite previous evidence linking DRN with reward uncertainty, we found no 
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relationship between the environment’s stochasticity and brain activity in DRN 
(GLM3.1; tDRN(58)=1.10, p=.824) and no evidence that stochasticity was represented 
in other ROIs (GLM3.1; see fig.S5).  

After determining that DRN, VTA and Hb were the key regions tracking the 
environment, we probed their involvement in motivation-states identified with the GLM-
HMM. We first quantified the relationship between brain activity and motivation-state 
level (high vs. low) which suggested that high motivation-states were reflected in 
increased activity in VTA and Hb, but not in DRN (GLM3.4; tHb; motivation-state (58)=2.41, 
p=.038; tVTA; motivation-state (58)=2.96, p=.014; tDRN; motivation-state (58)=1.59, p=.120; fig.3C 
& fig.3D). Next, we explored activity related to motivation-state transitions (change vs. 
no-change) by identifying transition-trials on which the maximum a posteriori 
motivation-state was different from the preceding trial. For each transition-trial, we 
defined a corresponding transition-period comprising a symmetric 7 trial window 
centred on the transition-trial (i.e. the transition trial +/- 3 trials) – a timespan that was 
based on simulations showing that transition decoding was accurate at this timescale 
(see supplementary figure S3F). Brain activity in these periods showed a striking 
dissociation whereby DRN – but neither Hb nor VTA – signalled transitions between 
motivation-states (GLM3.4; tDRN; state-transition(58)=-2.70, p=.020; tHb; state-transition(58)=-
1.28, p=.206; tVTA; state-transition(58)=-1.65, p =.206; fig.3C & 3D).   

We confirmed that the transition effect was localised to DRN by analysing BOLD 
signal from adjacent anatomical features such as the medial raphe nucleus (MRN) 
and fourth ventricle, which showed no corresponding patterns (fig.3F & 3G; tDRN(58) 
=-2.70, p=.020, tMRN(58)=0.93, p=.715, tVent.(58)=0.54, p =.715). We then 
systematically varied the position of transition-periods relative to transition-trials to 
probe the effect’s temporal specificity. Activity changes in DRN were most prominent 
when the analysed period was closely aligned with the decoded transition-trial, 
suggesting that they were indeed specific to motivation-state transitions (fig.3H; see 
Supplementary fig.S8B & S8C for details). Given the haemodynamic delay in fMRI 
recordings, the timing of the effects suggested that activity changes occurred during 
the ITIs preceding trials on which state-transitions occurred, meaning that they are 
unlikely to be epiphenomena of action or outcome-processing events (supplementary 
fig.S8B). Finally, we distinguished different directions of transition which indicated that 
DRN activity covaried with high-to-low transitions but not low-to-high transitions 
(GLM3.4 tDRN; high-to-low-transitions (58)=-2.46, p=.017; tDRN; low-to-high-transitions (58)=1.24, 
p=.220; fig.3E). Taken together, these analyses suggested that DRN – and DRN 
specifically – implemented negative changes in intrinsic motivation for rewards.  
 
Non-invasive disruption of DRN perturbs motivation-state transitions  
 
fMRI recordings linked DRN to behaviour in two complementary ways; (i) DRN coded 
the richness of the environment, which modulated an animal’s motivation to pursue 
specific reward opportunities and (ii) DRN coded transitions between GLM-HMM 
derived motivation-states, and therefore changes in reward pursuit over multi-trial 
timescales. We tested DRN’s causal contribution in these respects with a second 
experiment using transcranial ultrasound stimulation (TUS; fig.4A) – a minimally 
invasive and reversible technique that disrupts brain activity via kinetic interactions 
between focused ultrasound waves and mechanosensitive ion channels at the neuron 
and astrocyte membrane43,44. These interactions change activity in spatially 
circumscribed brain regions, and short TUS trains of the type we used are known to 
produce short term changes in neural activity by inducing N-methyl-d-aspartate 
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(NMDA)-dependent plasticity45–49. As a result, a region targeted with TUS alters its 
responsiveness to activity in interconnected areas, while non-stimulated areas show 
no such change25.  

We used an offline TUS protocol that modulates neural activity for over an hour 
after sonication25,50,51. We compared DRN-TUS to three control conditions: a sham 
condition (sham-TUS), an active cortical control (superior temporal sulcus; STS-TUS), 
and an additional active subcortical control in VTA – a region implicated in motivation 
in fMRI recordings but in different ways to DRN. We first performed simulations of 
acoustic wave propagation under the TUS protocol which established that selective 
perturbation of DRN and VTA was feasible despite their diminutive size and anatomical 
location (fig.4A & 4B, and supplementary figure S9). We then empirically tested the 
TUS protocol’s anatomical specificity by measuring changes in functional connectivity 
between DRN, VTA and series of key brain areas before-vs-after DRN-TUS and – as 
a control – before-vs-after VTA TUS. This showed striking and selective changes in 
region-specific functional connectivity: DRN-TUS disrupted DRN’s ordinary patterns of 
coactivation with key interconnected regions but left VTA connectivity unchanged, and 
the converse pattern occurred after VTA-TUS (fig.4C). In combination with the 
sonication simulations, this indicated that TUS induced, safe, efficacious, and highly 
localised disruption of DRN and VTA activity, analogous to previous investigations of 
TUS in subcortical brain regions25,50,51.  

We tested the same monkeys from the fMRI experiment on five sessions of the 
behavioural task per TUS condition in counterbalanced and pseudorandomised order 
(see Methods). We first investigated how TUS modulated the influence of (i) richness 
of the environment, and (ii) behavioural history, which were the key factors driving the 
pursue/reject decisions made on each trial. DRN-TUS diminished the effect of richness 
of the environment relative to all other conditions. (GLM4.1; βDRN-TUS vs sham-TUS*richness=-
0.18, SE=0.05, p<.001; βDRN-TUS vs STS-TUS*richness=-0.12, SE=0.06, p=.025; βDRN-TUS vs 

VTA-TUS*richness=-0.12, SE=0.06, p=.035; fig.4D). Similarly, DRN-TUS clearly reduced the 
effect of behavioural history relative to sham-TUS and STS-TUS, and produced a 
marginal difference relative to VTA-TUS (GLM4.2; βDRN-TUS vs sham-TUS*behave-history=-0.42, 
SE=0.11, p<.001; βDRN-TUS vs STS-TUS*behave-history=-0.24, SE=0.11, p=.027; βDRN-TUS vs VTA-

TUS*behave-history=-0.20, SE=0.11, p=.057; fig.4E). There were no differences between 
active control conditions (STS-TUS and VTA-TUS) and sham-TUS (GLM4.1 &  fig.4D; 
βVTA-TUS vs sham-TUS*richness=-0.06, SE=0.06, p=.282; βSTS-TUS vs sham-TUS*richness=-0.06, SE 
=0.05, p=.306; GLM4.2 & fig.4E; βVTA-TUS vs sham-TUS*behavioural-history=-0.20, SE=0.10, 
p=.060; βSTS-TUS vs sham-TUS*behavioural-history=-0.18, SE=0.11, p=.090). DRN, therefore, was 
specifically and causally involved in the impact of an animal’s recent reward 
environment and behaviour on its present decisions to pursue reward.  

Next, we applied the GLM-HMM to behavioural data from the TUS experiment 
(see Methods). Our analysis focused on motivational-state transitions, which were a 
distinguishing feature of DRN activity in fMRI recordings. These recordings suggested 
that DRN was specifically involved in high-to-low motivational-state transitions, but we 
first performed the analysis in a direction-neutral way given the interdependence of 
time-series observations: because animals typically began the task in a high-
motivation state (p(init-state=high)=0.70), reducing the likelihood of high-to-low 
transitions would necessarily reduce the frequency of low-to-high transitions in a fixed-
length time series, even if the underlying low-to-high transition probability was 
unchanged. The analysis showed a striking pattern whereby DRN-TUS reduced the 
likelihood of transitions relative to all other TUS conditions (GLM 4.3; βDRN-TUS vs sham-

TUS=-1.08, SE=0.27, p<.001; βDRN-TUS vs VTA-TUS=-0.71, SE=0.29, p=.013; βDRN-TUS vs STS-
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TUS=-0.57, SE=0.29, p=.051; fig.4F). There was no effect of VTA-TUS relative to sham-
TUS (GLM4.3; βVTA-TUS vs sham-TUS = -0.37, SE = 0.22, p = .090). There was a moderate 
difference between STS-TUS and sham-TUS but this was outweighed by the fact that 
DRN-TUS reduced the likelihood of transitions even relative to STS-TUS (GLM4.3; 
βSTS-TUS vs sham-TUS=-0.51, SE=0.23, p=.022; βDRN-TUS vs STS-TUS=-0.57, SE=0.29, p=.051). 
DRN-TUS was, moreover, the only condition that reduced high-to-low transitions 
specifically (GLM4.4; βDRN-TUS vs sham-TUS=-0.77, SE=0.32, p=.016; βVTA-TUS vs sham-TUS=-
0.33, SE=0.28, p=.238; βSTS-TUS vs sham-TUS=-0.43, SE=0.29, p=.139), and caused 
animals to spend more time in high-motivation states relative to sham-TUS (GLM4.5; 
βDRN-TUS vs sham-TUS=0.28, SE=0.07, p<.001), consistent with the idea that DRN-TUS 
prevented animals from transitioning to low motivation states.  

Finally, we sought to specify how DRN controlled transitions between 
motivation states. To do so, we returned to an earlier analysis demonstrating that 
motivation-states were consonant with the availability of rewards: in brief, animals 
were more likely to occupy high-motivation states when there were many high-value 
rewards available, analogous to the way that animals pursued more opportunities in 
rich environments (fig.2J & 2K). Given DRN’s critical involvement in the latter 
phenomenon, we asked whether its control of motivational-state transitions was 
mediated by the availability of rewards. Consistent with this view, DRN-TUS 
diminished the relationship between the availability of rewards and motivation-states 
relative to all other TUS conditions (GLM4.5; fig.4H; βDRN-TUS vs sham-TUS*Ave. EV=-0.28, 
SE=0.07, p<.001; βDRN-TUS vs STS-TUS*Ave. EV=-0.29, SE=0.07, p<.001; βDRN-TUS vs VTA-

TUS*Ave. EV=-0.30, SE=0.07, p<.001). There were no effects of VTA-TUS or STS-TUS 
relative to sham-TUS (βVTA-TUS vs sham-TUS*Ave. EV=-0.03, SE=0.06, p=.610; βSTS-TUS vs sham-

TUS*Ave. EV=-0.05, SE=0.07, p=.499). Intriguingly, DRN-TUS’s influence was more 
prominent for the link between low-value reward environments and low-motivation 
states, which dovetailed with fMRI signals implicating DRN specifically in high-to-low 
transitions (GLM4.5;  for Ave.EV< μAve.EV  βDRN-TUS*Ave. EV=-0.52, SE=0.19, p=.006; for 
Ave.EV ≥ μAve.EV  βDRN-TUS*Ave. EV=-0.13, SE=0.15, p=.403). Taken together, these 
results suggest that DRN has a fundamental role in ensuring that an animal’s 
motivation-level is appropriate to the distribution of rewards in the environment.    
 
A cortico-subcortical circuit for reconciling behaviour with the environment 
 

In a final analysis, we examined interactions between DRN and other brain 
regions that might relate to its behavioural function. To do so, we first reverted to the 
analysis of brain activity and behaviour which did not rely on the GLM-HMM framework 
(fig.3A & B). Here, DRN, VTA and Hb represented an animal’s environment with 
complementary patterns of activity, which suggested that they might form a circuit for 
reconciling decisions with the surrounding environment. In testing the circuit 
hypothesis, we expanded our purview to functionally related cortical ROIs in 
Supplementary Motor Area (SMA), Anterior Cingulate Cortex (ACC) and Anterior 
Insula (AI) based on previous work implicating these regions in behavioural 
change19,50,52–54. Only AI recapitulated the distinctive contingency between richness 
and behavioural history seen in subcortical ROIs, and we therefore retained AI as a 
cortical ROI for connectivity analysis (see fig.S7).  

Next, we asked which ROIs coded the pursue/reject decision taken on each 
trial – in other words, the output of the putative decision-making circuit. BOLD activity 
time-locked to decision-making in both Hb and AI represented pursue/reject decisions 
(GLM3.3; tpursue; Hb(58)=3.24, p=.011; tpursue; AI(58)=2.78, p=.028; see fig.S6). We then 
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conducted psychophysiological interaction (PPI) analyses to probe changes in 
pairwise connectivity between regions as a function of the environment55,56. PPIs 
mirrored the patterns observed earlier: connectivity between DRN and AI increased as 
a function of richness of the environment after rejections (GLM3.6; tPPI(DRN-AI by richness); 

rejected(58)=2.84, p=.006; fig.5Ai) and increased between VTA and AI after pursuits 
(GLM 3.6; tPPI(AI-VTA by richness); pursued(58)=2.14, p=.036; fig.5Aiii). Adopting the GLM-
HMM analysis approach showed a corresponding pattern of results (GLM3.7; figs.5Ai 
& 5Aiii). Connectivity between Hb and AI was not modulated by the richness of the 
environment but instead by the pursue/reject decision taken on each trial, consistent 
with a role in translating motivation to action57 (GLM3.8 tPPI(AI-Hb by action)(58)=2.25, 
p=.028; fig.5Aii).  
 
Discussion  
 

We provide converging evidence that DRN controls changes in an animal’s 
motivation for rewards. We observed distinctive patterns of DRN activity 
corresponding to the richness of an animal’s environment and transitions between 
statistically delineated motivation-states. We followed this with first-of-its-kind 
minimally invasive DRN disruption which diminished the environment’s effect on 
decision-making and reduced the frequency of motivation-state transitions. This 
suggests that DRN is causally involved in changes in motivation.   

Our findings dovetail with two prevailing views on DRN function: the first has 
emphasised DRN’s role in behavioural changes, for example between exploration and 
exploitation, or patience and impulsivity7–14; the second has linked DRN activity to 
statistical descriptions of rewards, like the general value and/or uncertainty of the 
options characterising an environment15–23. We observed similar brain-behaviour 
relationships here, and the concurrence of both phenomena suggests that they are 
fundamentally related. In support of this view, we found that DRN disruption impaired 
animals from matching their motivation-state with the availability of rewards, and 
specifically from entering low-motivation states during low-value environments – an 
important motif in normal behaviour. In tandem with previous studies, this indicates 
that DRN is critical for changing an animal’s behaviour according to the reward 
statistics of the surrounding world.  

Several previous studies have linked DRN with prediction-error like responses 
during learning tasks in which there is fundamental uncertainty about the reward 
available on each trial7,9,11,15,38,58. In contrast, the properties of specific reward 
opportunities were explicitly signalled in our paradigm, and the key manipulation was 
the distribution of reward opportunities over time. This might explain the absence of 
reward-uncertainty signals in DRN fMRI recordings. It might similarly explain VTA’s 
involvement in the task. Although it is perhaps surprising that VTA did not feature more 
prominently given its well-documented links to reward and motivation, the task did not 
require reinforcement learning, which is a key function of dopaminergic nuclei 59. The 
patterns of VTA activity that we did observe – (i) the richness of the environment after 
pursuits, and (ii) trial-by-trial motivation-state level – are consistent with a cognate role 
in driving behaviour in proximity to rewards31,36,37,60.  

How might DRN coordinate with other brain regions to control decisions? Unlike 
other subcortical ROIs, we found that activity in Hb covaried with both an animal’s 
pursue/reject decisions and the individual factors that shaped them. This is consistent 
with an emerging theory that Hb integrates motivationally-salient information from its 
diverse range of afferent connections to control motor output via the basal ganglia57,61–
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64. Similar patterns of activity occurred in AI, which is perhaps the computational 
source of representations concerning rewards obtained over multiple timepoints19,57,65. 
Although it is difficult to specify directions of influence from fMRI recordings, we 
observed patterns of functional connectivity consistent with communication between 
AI-DRN, AI-VTA, and AI-Hb depending on an animal’s previous behaviours – a 
scheme which matches well-documented patterns of anatomical connection62. 
Cortico-subcortical interactions of this kind echo a common neural motif whereby 
information synthesised in the cortex is transmitted to subcortical nuclei, which have 
wide-ranging efferent connections capable of orchestrating brain-wide activity57,63,66,67.   

The fact that animals were ceteris paribus more likely to pursue rewards in high-
value environments controverts prominent formulations of optimal reward-
seeking1,19,31,50,65, which argue that animals should be less selective during periods of 
reward scarcity on account of their homeostatic requirements. Nevertheless, the 
pattern observed ensures that animals maximise their reward intake in the manner 
that these theories envisage: given that animals usually lack perfect knowledge about 
the richness or sparseness of future opportunities, a reasonable strategy is to 
concentrate their efforts on rich environments where they have the most to gain. In 
support of this view, the GLM-HMM analysis identified persistent motivation-states in 
monkey behaviour that were positively correlated with the availability of rewards.  

Finally, it is noteworthy that many neurons in DRN are serotonergic and that 
DRN is the principal source of serotonin to the mammalian forebrain3,4. Although the 
techniques we implemented are not serotonin specific, our results are reminiscent of 
several proposals about its function. We found (i) a positive correlation between DRN 
activity and reward scarcity, evoking classic theories that link serotonin to punishments 
and reward omissions32,68–70, and (ii) a causal relationship between DRN and changes 
in behaviour, akin to serotonin's role in perseverative choice7,11,13,71. The key finding in 
our experiment relative to previous work is that DRN controlled patterns of behaviour 
that unfolded over multiple timepoints, not just specific reinforcement events or 
decisions. In a similar vein, it is possible that serotonin is important not for moment-to-
moment decision-making per se but for changing the overarching strategy of an 
animal’s behaviour, and perhaps especially for changes that involve adverse feedback 
from the environment. Testing this hypothesis is a promising avenue for future 
experiments.  
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FIGURES 

 
Figure 1. Animals are more likely to pursue reward opportunities in rich environments. 
(A) Animals performed a behavioural task involving sequential encounters with reward 
opportunities that varied in reward-magnitude (stimulus-colour) and reward-probability (dots-
per-stimulus). Animals performed the task while undergoing functional magnetic resonance 
imaging and pupillometry (B) The probability density of reward-probability in different reward 
environments. Rich environments (purple; mean(reward-probability)=.75) were characterised 
by higher mean reward-probability than poor environments (blue; mean(reward-
probability)=.55). Stochastic environments (light colours; sd(reward-probability)=.13) were 
characterised by uniform distributions and predictable environments by normal distributions 
(dark colours; sd(reward-probability)=.05). (C) A depiction of changes in reward-probability as 
a function of reward environment in an example session. Each session comprised four 
environments covering each permutation of richness and stochasticity. (D) Illustration of levels 
of the key dimensions for the example in previous panel: (i) richness and (ii) stochasticity. (E) 
Animals were more likely to pursue opportunities as the richness of the environment 
increased. X-axis indicates the expected value of the reward opportunity on each trial. Y-axis 
indicates rate of reward-pursuit. Colour-scale indicates mean-split according to richness of the 
environment. i.e. high corresponds to trials where richnesst > μrichness and low to richnesst ≤ 
μrichness. Dots indicate mean pursue-rates in quintile bins of expected-value. (F) Animals were 
more likely to pursue opportunities as the stochasticity of the environment increased. X-axis, 
Y-axis, dots and colour-scale follow conventions of (E). (G) Animals were likely to repeat their 
previous decision over consecutive trials. Dots indicate mean level of responding per animal 
per session. In boxcharts, box-lengths indicate interquartile (IQR) ranges, bold lines indicate 
medians, and whiskers indicate median ± 1.5xIQR. (H) Behavioural history modulated the 
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effect of richness of the environment. Dots indicate mean level of responding in quintiles of 
richness, split according to behavioural history.
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Figure 2. Animals exhibit distinct, persistent, and biologically meaningful motivation-
states during behaviour. (A) Data showing reward-pursuit (dots linked to y-axis labels on 
right: dots at top indicate reward-pursuits; dots at bottom indicate reward-rejections) as a 
function of expectation-value (y-axis; left) over time (x-axis) in an example session. Animals 
exhibited autocorrelated patterns of behaviour in which they were biased to pursue (red; high-
motivation) or reject (pink; low-motivation) opportunities almost regardless of expectation-
value. States of high- and low-motivation (see panel B) tended to occur with experimentally 
controlled changes between rich (purple) and poor (blue) environments. (B) We captured such 
behaviour with a GLM-HMM featuring state-dependent bias parameters that produce 
corresponding state-dependent decision functions. These decision-functions capture changes 
in the way animals make decisions over time. (C) A model incorporating two HMM-states 
clearly improved model fit relative to alternative numbers of states. Reported here as AIC – a 
penalised form of log-likelihood (see supplementary fig.S2A for full cross-validation results). 
Points show mean session-wise AIC for each animal. (D) The posterior probabilities of state-
specific bias parameters in all animals (M1 – M4) indicate that HMM-states impact an animal’s 
intrinsic propensity to pursue rewards.  (E) Transition matrices reflecting the conditional 
probability of HMM-states from one trial to the next show strong autocorrelations in HMM-
states in all animals (M1–M4). (F) Animals were more likely to pursue reward opportunities 
when occupying high-motivation states relative to low-motivation states regardless of an 
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opportunity’s expected value. Dots indicate mean pursue-rates in quintiles of expected-value. 
(G) Pursue-rates changed abruptly at motivation-state transitions and are lower in the five 
trials before vs after low-to-high transitions and – correspondingly – greater in the five trials 
before vs after high-to-low transitions. This suggests that the GLM-HMM identifies state-like 
rather than gradual changes in behaviour. Color shades indicate transition direction. (H) Pupil-
size – a common indicator of physiological arousal – is larger during the decision-phase (see 
Methods) of the task when animals are in the high-motivation state relative to the low-
motivation state. Dots indicate mean pupil-size for each session in each animal in each 
motivation-state.  In boxcharts, box-lengths indicate interquartile (IQR) ranges, bold lines 
indicate medians, and whiskers indicate median ± 1.5xIQR. (I) Reaction time – a common 
measure of vigour – is faster when animals occupy the high-motivation state. Dots indicate 
mean RT for each session in each animal in each motivation-state. In boxcharts, box-lengths 
indicate interquartile (IQR) ranges, bold lines indicate medians, and whiskers indicate median 
± 1.5xIQR. (J) The likelihood that animals occupy the high-motivation state increases as a 
function of the expectation-value of recent reward opportunities (Ave. EV). Dots indicate mean 
rate of motivation-state occupancy in quintiles bins of average expectation-value. (K) Low-to-
high and high-to-low transitions in motivation-states are consonant with changes in the 
availability of rewards. Lines and shadings indicate the mean and standard error, respectively, 
of Ave. EV in trials proximate to motivation-state transitions. 
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Figure 3. Brain activity in dorsal raphe nucleus represents a unique combination of an 
animal’s environment, recent behaviour and internal motivation-state (A) Timecourse of 
the effect that the richness of the environment (β-richness) has on BOLD signal in subcortical 
ROIs. Time (x-axis) is depicted relative to the onset of reward-opportunities when pursue-vs-
reject decisions are made (i.e. time=0 corresponds to decision-time). In macaque monkeys, 
BOLD signal reaches its maximum approximately 2-4s after the neural activity which caused 
it. The timing of peak β-weights in DRN, VTA and Hb is therefore consistent with brain activity 
that occurs at the time of decision-making. Top panel shows effects over all trials (GLM3.1) 
and bottom panel shows the analysis separately as a function of behavioural history (GLM3.2; 
see main text for explanation). Despite the partial collinearity between richness of the 
environment and behavioural history regressors, BOLD signal in both DRN and Hb represents 
richness of the environment across all trials (GLM 3.1; tDRN(58)=-2.79, p=.036; tHb(58)=-2.86, 
p=.035). (B) Distribution of peak effect sizes of richness of the environment (β-richness) on 
BOLD signal. Dots indicate peak effect sizes for individual sessions. Separating the data in 
this way revealed striking patterns in the direction and timing of environment representations 
across regions. DRN represented the richness of the environment with negative sign after the 
previous opportunity was rejected (GLM 3.2; tDRN; rejected(58)=-2.80, p=.034; tDRN; pursued(58)=-
0.37, p=.713); BOLD signal in VTA represented richness with positive sign when animals 
pursued the previous opportunity – a signal that was hidden in the amalgamated data 
(GLM3.2; tVTA; pursued(58)=3.30, p=.009; tVTA; rejected(58)=1.60, p=.350); Hb, meanwhile, 
recapitulated the sign and behavioural contingency of DRN and VTA with distinct positive and 
negative signals on trials after pursuits and rejections, respectively (GLM3.2; tHb; 

pursued(58)=3.32, p=.009; tHb; rejected(58)=-3.37, p=.008; tHb; rejected-vs-pursued(58)=4.95, p<.001). A 
two-way ANOVA followed by pairwise comparisons confirmed that signals in DRN and VTA 
after rejections and pursuits, respectively, were different from one another but not from the 
corresponding Hb effects (FROI(2, 348)=8.106, p<.001, FBehav.-history(1, 348)=22.305, p<.001; 
FROI-by-Behav.-history(2, 348)=4.521, p=.012; tVTA vs DRN; pursued(58)=2.501, p=.015; tDRN vs VTA; rejected(58) 
=-3.403, p<.001; tVTA vs Hb; pursued(58) =0.650, p=.518; tDRN vs Hb; rejected(58)=-0.214, p=.831). (C) 
Timecourse of the effect of motivation-state level (high vs. low motivation state; purple) and 
motivation-state transitions (red) on BOLD activity in ROIs that represented the reward 
environment. Given haemodynamic delay (see (A)), the neural activity underlying the state-
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transition effect in DRN is likely to occur in the ITIs preceding trials on which transitions occur, 
meaning that it is not an epiphenomenon of action or outcome related processes. (D) 
Distribution of peak effect sizes for motivation-state level (purple) and motivation-state 
transitions (red) on brain activity. Only DRN represents transitions between motivation-states. 
Dots indicate peak effect sizes for individual sessions. (E) The timecourse of the effect that 
low-to-high (red) and high-to-low (pink) motivation-state transitions have on DRN BOLD 
activity. The effect is strongest for high-to-low state transitions. Inset panel shows distribution 
of peak effect sizes. (F) and (G) Motivation-state transitions affected BOLD signal in DRN but 
not neighbouring features like median raphe nucleus (MRN) and the 4th ventricle, confirming 
that the pattern was DRN-specific (tDRN(58)=-3.69, p=.002, tMRN(58)=1.88, p=.102, tVent.(58)=-
1.99, p=.102). (H) Shifting the position of transition-periods relative to decoded transitions 
showed that activity changed were temporally specific to decoded transition-times. X-axis 
indicates position of transition-period relative to decoded transition time (where t=0 represents 
decoded transition trial). Dots and error bars indicate mean and 95% confidence interval of 
effect-sizes for each transition-window. See supplementary figure S8 for further detail.  In 
timecourse graphs (A, C, E and F), lines and shadings show the mean and standard error 
(SE) of the β weights across the sessions, respectively. Distribution graphs (B, D, E inset, and 
G) show peak regression weights where dots indicate weights from individual sessions. Dots 
and errorbars in H show mean and 95% confidence interval of regression effects for different 
transition-period windows. In boxcharts, box-lengths indicate interquartile (IQR) ranges, bold 
lines indicate medians, and whiskers indicate median ± 1.5xIQR.  
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Figure 4. Non-invasive perturbation of dorsal raphe nucleus shows that it is causally 
involved in the influence of a monkey’s environment on its behaviour. (A) We 
investigated the causal contribution of DRN to behaviour with transcranial ultrasound 
stimulation (TUS) – a minimally invasive form of brain stimulation suited to subcortical brain 
regions (B) Simulating the propagation of acoustic waves under the TUS protocol suggested 
that sonication was target-specific after DRN-TUS and VTA-TUS. Colour map indicates 
probability of neuromodulation after bilateral TUS, calculated as the sum of stimulation 
intensity (Isppa) maps across two consecutive stimulations delivered over left and right 
hemispheres, respectively (see fig. S9). Combined impact probability maps are overlaid on a 
standard F99 brain. (C) DRN-TUS (left) disrupted DRN (red) connectivity with key brain 
regions whilst leaving VTA (blue) connectivity intact. The converse pattern occurred after VTA-
TUS (right). Radial axis shows absolute-value of the difference in connectivity between seed 
and target ROIs pre-vs-post TUS (see methods for details). Targets included ventrolateral 
prefrontal cortex (vlPFC), anterior insular (AI), anterior cingulate cortex (ACC), habenula (Hb), 
ventral tegmental area (VTA), substantia nigra (SN), ventral striatum (VS), median raphe 
nucleus (MRN) and dorsal raphe nucleus (DRN). (D) DRN-TUS (left) attenuated the effect that 
the richness of an animal’s environment had on behaviour relative to sham-TUS (left), STS-
TUS (middle), and VTA-TUS (right). Datapoints indicate mean pursue-rates in quintile bins of 
richness-of-the-environment. (E) DRN-TUS attenuated the effect of behavioural history on 
current behaviour relative to sham-TUS and STS-TUS, marginally with respect to VTA-TUS. 
Datapoints indicate mean pursue-rates for each animal in each session for. In boxcharts, box-
lengths indicate interquartile (IQR) ranges, bold lines indicate medians, and whiskers indicate 
median ± 1.5xIQR. (F) The posterior-probability of state-transitions in GLM-HMMs fitted to 
data from different TUS conditions. The central tendency of DRN-TUS posteriors is lower than 
for to STS-TUS, VTA-TUS and sham-TUS. (G) Fewer motivation-state transitions occur in 
DRN-TUS sessions relative to all other TUS conditions. Bars show the total number of 
motivation-state transitions decoded over all sessions in each TUS condition. (H) DRN-TUS 
diminishes the effect that the availability of rewards ordinarily has on an animal’s motivation-
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state level. Datapoints indicate mean rates of high-motivation state occupancy in quintiles of 
average expected value (Ave. EV). 
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Figure 5. A brain circuit for reconciling an animal’s motivation with its environment. (A) 
PPIs indicated the following patterns of cortico-subcortical. (i) Connectivity between DRN and 
AI increased as a function of richness of the environment in the aftermath of rejections 
(GLM3.6; upper panel), and as a function of high-to-low motivation-state transitions (lower 
panel; GLM3.7; tPPI(high-to-low)=3.32, p=.002, tPPI(low-to-high)=1.10, p=.274), consistent with DRN’s 
fMRI signals (ii) connectivity between AI and Hb increased as a function of an animal’s ultimate 
decision about whether to pursue a reward opportunity (GLM3.8). (iii) In contrast to DRN, 
connectivity between VTA and AI increased as a function of richness of the environment in the 
aftermath of pursuits (GLM3.6; upper panel), and during high-motivation states (GLM3.7; 
tmotivation-level=2.26, p=.028).  
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SUPPLEMENTARY MATERIAL 

Figure S1. Additional analysis of behaviour.  (A) A complementary perspective on 
the relationship between environments and behaviour is afforded by the blocks 
specified in the experimental design. The reward-probability distributions for rich-
volatile and poor-volatile blocks partly overlapped (fig.1B), which produced a subset 
of trials with the same reward value in different contexts (poor vs rich). Animals were 
more likely to pursue offers that occurred in rich blocks relative to poor blocks, 
dovetailing with the analysis reported in the main text (fig.1E; βrich-vs-poor=0.90, 
SE=0.14, p<.001). Dots indicate mean rates of responding in each session and animal. 
In boxcharts, box-lengths indicate interquartile (IQR) ranges, bold lines indicate 
medians, and whiskers indicate median ± 1.5xIQR. (B) In the main text, we 
operationalised reward environments in way that emphasised an animal’s recent 
experience reward outcomes, rather than underlying experimentally defined 
conditions. We set the time-horizon for this analysis by testing the effect of specific 
reward outcomes received n trials into the past. Rewards received 5 trials into the past 
(t-5) were the last point at which significant effects occurred in all animals, and we 
therefore operationalised environment-related effects with 5-trial retrospective 
windows. Points and error bars indicate mean and 95% confidence interval for effect-
sizes of previous rewards for each individual animal. (C) and (D) Animals were more 
likely to pursue offers as a function of increases in the richness (C) and stochasticity 
(D) of the environment (see also fig.1E–F). Dots indicate mean pursue-rates in quintile 
bins of richness-of-the-environment and stochasticity-of-the-environment, 
respectively.  
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Figure S2. Quantitative and qualitative validation of the GLM-HMM. (A) We tested  
GLM-HMMs using 5-fold cross-validation performed within each individual animal. 
This involved dividing the data into five folds and iteratively fitting the model to sessions 
in four folds (i.e. training folds) before testing performance on the held-out (i.e. test) 
fold. Our metric of model performance was log-likelihood, which we computed using 
the forward algorithm (see Methods). We constructed folds between-sessions instead 
of trials-within-sessions because between-session variance is greater than within-
session variance 26, meaning that between-session cross-validation is a more 
demanding tests of performance. For each fold, we tested models with s ∈ {1, 2, 3, 4, 
5} HMM-states and calculated the log-likelihood of test sessions. All animals followed 
a similar pattern whereby models with two HMM-states performed better than Binomial 
GLMs (i.e. 1-state models), whereas additional states either failed to improve or 
impaired model performance. The relationship between the log-likelihood of the held-
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out sessions as a function of HMM-states is shown for all animals (foregrounded bold 
lines indicate mean log-likelihood of held-out sessions; background lines indicate log-
likelihood of individual sessions). (B) The relative probability of motivation-states (y-
axis) over time (x-axis). Animals are more likely to occupy high-motivation states early 
in a session, and approximately equally likely to occupy high-vs-low motivation states 
at the end of a session – motivation-state, thus, are not reducible to satiety, fatigue, or 
time-on-task. Black line and shaded areas indicate mean and SEM, respectively, of 
state-occupancy as a function of time; dots indicate mean levels of state-occupancy 
in quintile time-bins over individual sessions. Dashed red line indicates mean 
probability of motivation-state occupancy, regardless of time. (C) Histogram of the 
number of motivation-state transitions per session (x-axis). One session features no 
transitions. Data from all animals included. (D) The probability of motivation-state 
transition (y-axis) as a function of time (x-axis). Although transitions are more likely to 
occur in later trials, there is no consistent and specific temporal pattern in transition 
events indicating that they are not reducible to the passage of time (per (C)). Line and 
shaded area indicate mean and SEM, respectively, of state-transitions rates in quintile 
bins of trials. Dashed red line indicates overall mean probability of state-transition, 
regardless of time. Data from all animals included. (E) Simulated datasets from fitted 
2-state GLM-HMMs reproduce trial-to-trial autocorrelations in behaviour, which were 
a key feature of animal behavioural. A binomial GLM – in contrast – is unable to 
reproduce this pattern. X-axis shows autocorrelation function (ACF) between the 
decision on trial t and decisions on (t-1):(t-10) for recorded behaviour, the 2-state GLM-
HMM and a Binomial GLM for an example animal. Lines and shaded areas show the 
mean and SEM, respectively, of the ACF at each individual lag. ACFs for the 
behavioural data were obtained by calculating the ACF at each lag in each individual 
session (N=16) and taking the lag-wise mean and SE of ACFs. Simulated ACFs were 
obtained by fitting the GLM-HMM using the 5-fold cross validation method described 
above and simulating decisions on held-out sessions. 10 simulations of each held-out 
session were performed before calculating the lag-wise mean and SE of the resulting 
distribution of ACFs. (F) A transparent way of showing autocorrelations in behaviour 
is with decision run-lengths – that is, the number of times that the same decision is 
repeated over consecutive trials (rejecting three consecutive reward opportunities, for 
example, constitutes a decision run-length of 3; see also26). Comparing the relative 
proportion of run-lengths in simulated and behavioural data showed that the GLM-
HMM captured animal behaviour better than a binomial GLM. Data shown as 
difference in observed and simulated (behaviour – model simulations) in proportion of 
run-lengths for the same example animal and simulations as in panel (E). (G) In 
particular, the GLM-HMM captures the tendency of animals to repeat decisions over 
five or more consecutive trials. A binomial GLM, in contrast, was unable to reproduce 
this pattern. Data from the same example animal and simulations as panel (E). (H) 
and (I) Fitting the GLM’s (GLM 1.1–1.4) used to analyse behaviour to data that was 
generated from a 2-state GLM-HMM recapitulated richness of the environment (H) and 
behavioural history effects (I). The same patterns did not occur for data simulated from 
1-state (i.e. binomial) GLMs. See fig. 1G and supplementary figure S1C for 
comparison.  
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Figure S3. Parameter recovery and decoding accuracy of GLM-HMM. We 
assessed the performance of the GLM-HMM fitting procedure by simulating 10 
datasets from fitted GLM-HMMs. Each dataset was approximately the same size as 
the total data obtained from each individual animal (~16 sessions, ~3000 trials). (A) 
We first tested whether the fitting procedure recovered the true number of HMM-states 
when the data was generated by a 1-state (i.e. Binomial GLM; left panel) and 2-state 
GLM-HMM (right panel) models. 2-state GLM-HMMs performed better under 2-state 
but not 1-state generative processes.  All subsequent data pertains to simulations with 
2-state GLM-HMM generative models. (B) The fitting procedure successfully 
recovered generative transition-matrix parameters. Graphs show posterior 
distributions over transition-matrix components in fitted 2-state GLM-HMMs. Black 
dashed lines indicate generative parameters and coloured lines indicate mean 
parameters over all fitted models. (C) The fitting procedure successfully recovered 
state-specific bias/intercept parameters. Graphs show posterior distributions over 
state-specific bias values. Dashed black lines indicate generative parameters and 
coloured lines indicate mean parameters over all fitted models. (D) We tested the 
accuracy of the Viterbi decoding algorithm by applying it to simulated datasets in which 
the true HMM-state was known. Viterbi decoding was successful on 90.68% (± 0.72%) 
of trials. Histogram shows session-level decoding accuracy (%) across 10 simulations 
comprising 16 sessions. (E) True and Viterbi-decoded states in a representative 
example session. (F) We assessed the Viterbi algorithm’s ability to identify state-
transitions by quantifying – for each decoded transition – the distance to the nearest 
true transition point. The majority of transition-points were exactly identified (Mdistance = 
-0.03, SD = 6.45) and 84% of decoded transitions occurred within ±3 trial window of a 
true transition. Histogram shows frequency of decoded-vs-true transition differences.  
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Figure S4. Cortical and subcortical regions of interest. An illustration of the ROIs 
implemented during fMRI analysis in CARET f99 macaque space. Subcortical and 
SMA ROIs consisted in anatomical masks that were drawn on a group structural 
template in CARET F99 macaque monkey space and then warped to individual 
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structural and functional spaces by nonlinear transformation. These masks were 
constructed separately by two-different assessors based on the Rhesus Monkey Brain 
Atlas72 and then evaluated on for convergence across assessors. ACC and AI ROIs 
were defined as 3mm spheres centred on the peak of functionally relevant activation 
contrasts obtained in previous studies19,50. The medial raphe nucleus (MRN) and 
fourth ventricle were only used as control ROIs to investigate the focality of the DRN 
effect.  
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Figure S5. No evidence for reward-stochasticity representations in ROIs. The 
time-course and peak-regression-coefficients for the effect of reward-stochasticity on 
blood oxygen level dependent (BOLD) signal in subcortical (A) and cortical (B) ROIs. 
Epochs are time-locked to decision-making. Reward-stochasticity had a modest 
influence on behaviour but there was no evidence that it was represented in the brain 
activity of ROIs (GLM3.1). 
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Figure S6. Habenula and Anterior Insula encode pursue/reject decisions. The 
time-course and peak-regression-coefficients of the relationship between pursuit 
decisions (pursue-vs-reject) and BOLD signal in subcortical (A) and cortical (B) ROIs. 
Epochs are time-locked to decision-making. (C) Pursuit decisions were represented in 
the BOLD activity of Hb (tHB(58) = 3.25, p = .012) subcortically and AI (tAI(58) = 2.78, 
p = .022)  in the cortex. No other ROIs represented pursuit decisions.  
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Figure S7. Anterior Insula represents the richness of the environment with the 
same pattern as subcortical ROIs. The time-course and peak-regression-
coefficients of the relationship between richness of the environment and BOLD signal 
in cortical ROIs. All epochs are time-locked to decision-making. AI is the only cortical 
ROI to represent an animal’s environment as a function of pursue/reject behaviour 
(GLM3.2; tAI; rejected(58)=-1.94, p=.057; tAI; pursued(58)=3.02, p=.004; tAI; pursued-vs-

rejected(58)=3.73, p<.001; Holm-Bonferroni correction not applied).  
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Figure S8. Further examination of motivation-state transitions in Dorsal Raphe 
Nucleus. (A) Our analysis of behaviour indicated that animals were more likely to 
occupy high motivation-states as the average expected-value of recently encountered 
rewards increased (fig. 2J). Given that BOLD activity in DRN represented transitions 
between motivation-states, we tested whether DRN also encoded the average 
expected-value of recent reward opportunities – the idea being that DRN might control 
changes in motivation-states specifically in relation to the distribution of available 
rewards. This was, indeed, the case – the average expected-value of the preceding 
five reward opportunities exerted a negative effect on BOLD activity in DRN (tEV(58) 
=-2.89, p=.005; GLM3.5). Inset panel shows distribution of peak regression 
coefficients. (B&C) We initially tested the effect of motivation-state transitions on brain 
activity in a symmetric 7 trial window centred on the transition-trial (i.e. the transition 
trial +/- 3 trials). This indicated that transitions were represented in the BOLD activity 
of DRN, as reported in the main text. We confirmed that this effect was not an artefact 
of our initial window selection by iterating the analysis over different 7-trial windows 
comprising transitions events. This showed that the effect was robust to window 
position (t(t-5):(t+1)(58)=-2.63, p=.011; t(t-4):(t+2)(58)=-3.69, p<.001; t(t-3):(t+3)(58)=-2.70, 
p=.009; t(t-2):(t+4)(58)=-2.60, p=.012; t(t-1):(t+5)(58)=-2.69, p=.009; t(t-0):(t+6)(58)=-1.88, 
p=.065; GLM3.6). Note that the windows featuring the least overlap with decoded 
motivation-transitions show non-significant effects (t(t-6):(t+0)(58)=-1.34, p=.180; t(t-
0):(t+6)(58)=-1.88, p=.065). Inset panel in D shows mean ± 95% confidence interval of 
transition effect across time-windows. 
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Figure S9.  Simulation of the propagation of acoustic waves produced by the 
TUS protocol targeting DRN and VTA.  Simulated focused ultrasound peak 
intensities and spatial distribution in the brain from successive left and right DRN / VTA 
stimulation. The skull was estimated from pseudo-CT images obtained from each 
monkey using a Black Bone MRI sequence 73. The maximum spatial-peak pulse-
averaged intensity (Isppa) at the acoustic focus point was 24.4 W/cm2 (0.86 MPa) for 
the left DRN target, 21.5 W/cm2 (0.80 MPa) for the right DRN target, 30.3 W/cm2 (0.95 
MPa) for the left VTA target and 19.9 W/cm2 (0.77 MPa) for the right VTA target.  The 
combined impact is calculated as the sum of stimulation intensity map across the two 
consecutive stimulations delivered over the left and right hemisphere for the DRN and 
VTA targets.  The simulation procedure is described in the Methods and previous 
studies74. The simulated data shown here is from monkey M2. 
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Experimental model and subject details 
 

The experiments were performed with four male rhesus macaques (Macaca 
mulatta). The sample size corresponded to those used in previous studies in which it 
had been possible to identify significant and reliable whole-brain functional magnetic 
resonance (fMRI) recording and transcranial ultrasound stimulation (TUS) across 
multiple testing sessions but with the minimum number of animals. The animals were 
10-12 years of age and weighed 14.30–17.09 kg. They lived in group housing with a 
12hr light dark cycle and were afforded access to water for 12–16 hr on testing days 
and free access on non-testing days. All procedures were conducted under a license 
issued by the UK Home Office in accordance with the Animal (Scientific Procedures) 
Act 1986 and the European Union guidelines (EU Directive 2010/63/EU).  
 
Behavioural training 
 

All monkeys were fitted with magnetic resonance imaging (MRI) compatible 
cranial implants that facilitated head-fixation during testing and training (Rogue 
Research). Training was conducted in MRI compatible chairs designed to 
accommodate monkeys in a sphinx position and took place in custom-built 
environments that replicated an MRI scanner. Animals were trained on simplified 
versions of the task in which they did not need to wait go-cue and action-outcome 
delays and were not exposed to controlled changes in their reward environment. Go-
cue and action-outcome delays were then introduced and carefully increased over the 
course of training until they were sufficient for an fMRI experiment (see below). 
Changes in the reward environment were introduced after animals were accustomed 
to the final delay timings. Testing for both the fMRI and transcranial ultrasound 
stimulation (TUS) experiments began when the proportion of pursued trials per 
session was stationary over consecutive days.  
 
Behavioural task  
 

Animals performed a simple decision-making task involving sequential 
encounters with reward opportunities that appeared on a computer screen. Reward 
opportunities were presented in visual form via coloured boxes (size of the box: 8 x 26 
cm) that were filled with dots. The colour of the stimulus indicated the number of juice 
drops that the opportunity was worth {red = 1; green = 2; blue = 3}. The number of 
dots comprising the stimulus indicated the probability that reward would be delivered 
if the opportunity was pursued. Reward probabilities ranged between (.05, 1), and dots 
indicated .05 linear increments of reward probability. The stimuli were designed so that 
dots gradually filled the box from the top downwards.  

Opportunities first appeared in the centre of the screen before displacing either 
right or left (fig. 1A). The displacement of the opportunity-stimulus functioned as a go-
cue which indicated that the opportunity was available for pursuit. Monkeys could 
pursue opportunities by manually responding to an infrared sensor corresponding to 
the opportunity’s on-screen location – for example, if the opportunity displaced right, 
they needed to touch a sensor with their right-hand, and vice versa if it displaced left. 
The go-cue was designed to temporally dissociate decisions about pursuing 
opportunities from the motoric processes which realised decisions in behaviour. 
Similarly, the randomised right/left displacement of the opportunity prevented monkeys 
from motor planning during the decision phase. The durations separating opportunity-
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onsets and go-cues were drawn from go-cue ~ uniform(3, 4) and were optimised for a 
canonical macaque hemodynamic response function (HRF) of approximately 4s. 
Monkeys had 1s to pursue opportunities after the go-cue. After pursuing opportunities 
monkeys needed to wait action-outcome delays spanning A-O-delay ~ uniform(3, 4) 
before receiving potential juice rewards accompanied by visual reward feedback. The 
next trial then began after an inter-trial interval spanning ITI ~ N(4, 1). If monkeys did 
not pursue an opportunity, they bypassed the action-outcome and reward-delivery 
durations and proceeded to the next trial. If monkeys pursued opportunities before the 
go-cue – i.e. prematurely – they needed to wait the remaining duration of the 
opportunity presentation, in addition to go-cue, action-outcome and reward-feedback 
durations. The opportunity which elicited the premature response was then repeated 
on the next trial.  

Each session of the task comprised four blocks of 40–50 trials. Blocks were 
used to engender different reward environments by systematically controlling the 
reward-probability aspect of opportunities. Environments varied on two dimensions: (i) 
richness was defined by the mean of the reward-probability distribution, where μrich = 
0.75 and μpoor = 0.55, and (ii) stochasticity was defined by the width of reward-
probability distributions, where predictable environments were generated from 
Gaussian distributions with σpredictable = 0.05 and unpredictable environments from 
random-uniform distributions with ranges of 0.40 such that σunpredictable= 0.13. Blocks 
were characterised along both richness and stochasticity dimensions, which yielded 
four distinct environment-types – rich-predictable, rich-stochastic, poor-predictable, 
and poor-stochastic. Each session featured one of each environment-type, and the 
order of environments was counterbalanced with respect to the richness dimension to 
avoid long periods of low-value offers (e.g., during consecutive poor environments) 
which were difficult for monkeys to perform.    Environment-types were indicated by 
visual cues which bordered the screen.  

The task was implemented in MATLAB v2019 (MathWorks) using 
Psychophysics Toolbox v3 75 and presented on MRI-compatible screens (23in BOLD 
screen; Cambridge Research Systems) approximately 30cm away from the subjects. 
Juice rewards consisted in a solution of water, blackcurrant cordial and banana and 
each juice drop was approximately 1mL. Pupillometric data was obtained during fMRI 
sessions via an MR-compatible infrared EYElink 1000 eye-tracker device (SR 
Research Ltd.) recording pupil-diameter and gaze-direction along x and y planes at a 
250-Hz sampling rate.  

Pre-processing and analysis of pupillometric data was performed in R and 
entailed the following steps (adapted from 76). Samples reflecting eye blinks were 
identified with a detection algorithm native to the EYElink device. Artefacts were 
defined as consecutive samples with discrepancies of > 50 a.u. All samples within 
symmetric 25 sample (i.e., 0.1s) windows of artefacts or eye blinks were scrubbed and 
linearly interpolated, and interpolated time series were then low pass filtered with a 
4Hz cut-off. These processes were performed for pupil-size, x-gaze-direction, and y-
gaze-direction time series respectively, which were z-scored. We then regressed 
variance due to x-gaze-direction and y-gaze-direction from pupil-size via linear 
regression and performed subsequent analysis using the residuals. 

To incorporate pupillometry in our behavioural analysis, we extracted pupil-size 
in specific epochs of the task, with a focus on periods after the presentation of reward 
opportunities in which animals were making decisions. In particular, we quantified – 
for each trial – mean pupil-size 0.5–1.0s after stimulus presentation. We selected this 
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epoch to avoid pupillometric responses reflecting sudden luminance changes, as 
when a visual stimulus first appears.  

 
Behavioural analysis 
 
Our initial analysis of behaviour characterised the influences on binomial pursuit/reject 
decisions. We accomplished this with mixed-effect binomial generalised linear models 
(GLMs) with subject-identity as a random variable. We quantified the richness of an 
animal’s reward environment via a moving-average with a retrospective five-trial 
window, and the stochasticity of its environment as the standard-deviation of that 
reward rate as follows:  
 
 Richness of environment 
 richnesst = mean(reward-receivedt–5: reward-receivedt–1) 
 
 Stochasticity of environment 

stochasticityt = sd(richnesst–5: richnesst–1) 
 
We implemented the following model to assess the factors influencing pursuit/reject 
decisions:  
 

GLM1.1 
logit(decisiont) = βo + β1reward-magnitudet + β2reward-probabilityt + 
β3environment-richnesst + β4environment-stochasticityt + β5 (reward-
magnitudet*reward-probabilityt) + β6 (trial-numbert) + μ0 + ε  

 
where β0-6 are fixed-effects, μ0 is the by-subject random intercept and ε is an error 
term. The small sample size precluded fitting GLM1.1 with the full random-effects 
structure – that is, affording all predictors random effects by subject. We therefore fit 
an iterative series of models in which the key predictors of interest – environment-
richness and environment-stochasticity– were individually afforded random effects by 
animal. All mixed-effects GLMs were performed in R and models were fit via maximum 
likelihood estimation as implemented in the lme4 toolbox. We then fit the following 
GLMs in using the same procedure: 
 

GLM1.2 
logit(decisiont) = βo + β1reward-magnitudet + β2reward-probabilityt + 
β3behavioural-historyt + β4 (reward-magnitudet*reward-probabilityt) + β5trial-
numbert + μ0 + ε  

 
where β0-5 are fixed-effects, μ0 is the by-subject random intercept and ε is an error 
term. 
 

GLM1.3 
logit(decisiont) = βo + β1reward-magnitudet + β2reward-probabilityt+ 
β3behavioural-historyt + β4environment-richnesst + β5 (environment-
richnesst*behavioural-historyt) + β6 (trial-numbert) + μ0 + ε  

 
where β0-6 are fixed-effects, μ0 is the by-subject random intercept and ε is an error 
term. 
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Behavioural modelling 
 

We used an GLM-HMM to probe time-varying patterns in behaviour that might 
reflect internal motivation-states. A GLM-HMM is an extension of the GLM that consists 
of two parts. The HMM part of the model assumes that time series events arise from 
so-called hidden states, which produce observations according to state-dependent 
probability distributions 26,27. These states bear Markov relations to one another, such 
that the state at time t is determined strictly by the state at time t-1, and the respective 
probabilities of transition between states. A simple HMM of animal behaviour in this 
context, for example, might comprise states in which responses arise from binomial 
distributions with state-dependent probability parameters that reflect changes in an 
animal’s motivation (i.e., probability of pursuing) across time. 

The GLM part of a GLM-HMM parameterises state-dependent probability 
distributions according to predictors26. The weights afforded to each predictor can vary 
from state-to-state, which enables the model to capture time-varying differences in an 
animal’s decision-making process. We implemented a GLM-HMM in which 
pursuit/reject decisions were parameterised by bias terms, in addition to predictors for 
the expectation-value of the specific opportunity animals were faced with on the 
current trials and binary environment cues indicating the experimentally manipulated 
richness and stochasticity of the reward environment. We were interested in internal 
states of motivation – that is, changes in an animal’s intrinsic propensity to pursue 
rewards. We therefore let only the bias parameter(s) change between states and 
constrained the weight on expectation-value and environment-cue parameters to be 
the same across states. Formally:  

 
𝑝(𝑦! = 𝑝𝑢𝑟𝑠𝑢𝑒|𝑧! = 𝑘, 	𝒙𝒕, 𝒘𝒌) = 	

1
1 + 𝑒$𝒘𝒌∙𝒙𝒕 

 
Where y ∈ {pursue, reject}T is the animal’s decisions across T trials, zt is the HMM 
state at trial t and zt ∈ {1,..., K} such that there are K states, , xt ∈ ℝM is a matrix of M 
predictors in the GLM part of the model at time t and wk ∈ ℝM represents M GLM 
weights over predictors that are specific to state k. Transitions between the states 
unfold according to a transition matrix A ∈ ℝK x K: 
 

𝑝$𝑧!"# = 𝑘(𝑧$ , 𝐴+ = 	𝐴$,& 
 
where transition matrix is stationary. The joint probability of behaviours and HMM 
states is given by:  
 

𝑝(𝐲, 𝐳|{𝐱}!'#( , {𝐰}&'#) , 𝐴, 𝜏) = 	𝑝(𝑧#)7𝑝(𝑧!"#|𝑧!)𝑝(𝑦! , 𝒙!)
(

!'*

 

 
Where 𝜏 ∈ ℝK is the initial state distribution such that 𝜏& = 𝑝(𝑧# = 𝑘). The likelihood 
function was fit to behavioural data via Markov Chain Monte Carlo optimisation 
implemented in STAN 77. For fMRI sessions, GLM-HMMs were fit to each individual 
animal’s behaviour. For TUS sessions, GLM-HMMs were fit for each stimulation 
condition.  
 We validated the GLM-HMM by confirming parameter recovery for diversely 
configured generative models (see fig. S2 & fig. S3). We fit an iterative series of 
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models with K ∈ {1, 2, 3, 4, 5} states to behaviour. We evaluated these models in 
following ways. Firstly, we compared their scores on session-wise log-likelihood and 
AIC – a well-established and easily interpretable metric of model fit that penalises 
complexity. Secondly, we implemented a five-fold cross-validation protocol in which 
GLM–HMMs were iteratively fit to 80% of sessions for each animal and tested on the 
remaining 20% of sessions 26. We then calculated the log-likelihood of held-out 
sessions (see fig. S2).  We further validated GLM-HMMs by generating simulated 
datasets from fitted models. We then inspected these simulations for key features and 
patterns of animal behaviour (fig. S2).  
 After performing model selection on GLM-HMMs, we decoded the maximum a 
posteriori sequence of HMM-states in each session via the Viterbi algorithm 77.  
 

𝐳𝒔∗ =	𝑎𝑟𝑔𝑚𝑎𝑥𝒛#:(𝑝(𝒛/,#:(|𝒚/,#:() 
 
Decoding the HMM-states allowed us to quantify their impact on behaviour, which we 
did using the following mixed-effects GLMs with subject-identity as the grouping 
variable: 
 

GLM2.1 
logit(decisiont) = βo + β1reward-magnitudet + β2reward-probabilityt + 
β3motivation-levelt + β4 reward-magnitudet*reward-probabilityt + β5trial-
numbert μ0 + μ1motivation-levelt  + ε  

 
where β0-5 are fixed-effects, μ0-1 are by-subject random effects for intercepts and 
motivation-level, respectively, and ε is an error term. Motivation-level ∈ {0,1} is a binary 
variable reflecting the motivation-state (low vs high) occupied on trial t. We identified 
motivation-state transitions by searching for cases where decoded motivation-states 
were different across consecutive trials (i.e., motivation-levelt ≠ motivation-levelt-1). We 
compared behaviour before-vs-after motivation-state transitions with the following 
mixed-effects GLM: 
 

GLM2.2 
logit(decisiont) = βo + β1reward-magnitudet + β2reward-probabilityt + β3before-
vs-after-transitiont + β4 reward-magnitudet*reward-probabilityt + β5trial-
numbert μ0 + μ1motivation-levelt  + ε  

 
where β0-5 are fixed-effects, μ0-1 are by-subject random effects for intercepts and time-
from-transition, respectively, and ε is an error term. Before-vs-after-transition was a 
binary variable that grouped trials into two categories: (i) ‘before-transition’ trials, 
defined as the five trials preceding a motivation-state transition, and (ii) ‘after-transition’ 
trials, defined as the five-trials in the immediate aftermath of a transition. We performed 
GLM2.2 separately for low-to-high and high-to-low motivation-state transitions. We 
then characterised the GLM-HMM’s convergent validity by comparing decoded states 
with variables that should change with motivation: (i) reaction-time, and (ii) pupil-size. 
To do this, we implemented the following mixed-effects GLMs:  
 

GLM2.3 
Pupil-sizet = βo + β1reward-magnitude+ β2reward-probability+ β3HMM-state + 
β4trial-number + μ1HMM-state + ε 
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GLM2.4 
log(Reaction-time t) = βo + β1reward-magnitude+ β2reward-probability+ 
β3HMM-state + β4trial-number + μ1HMM-state + ε 
 

Where β0-4 are fixed-effects and μ1 are random-effects within each subject. We did not 
implement random intercepts (i.e. μ0) for either model because pupil-size and reaction-
time were z-scored within-subjects during pre-processing. This meant that the central 
tendency of within-subject distributions for reaction-time and pupil-size was the same 
value (i.e., 0), and it was not necessary to add terms capturing inter-subject 
differences.  
 We used changes in decoded HMM-states to examine the temporal dynamics 
of motivation states. We were particularly interested in links between motivation-states 
and aspects of an animal’s external environment, like the recent history of reward 
opportunities it had been presented with. We quantified the latter by calculating a 
moving average of the expectation-value of reward opportunities received in the 
previous five trials. 
 
 Availability of rewards (Ave. EV) 
 
 Ave. EVt = mean(EVt–5: EV–1) 
 
We used Ave. EV to predict motivation-states via the following mixed-effects Binomial 
GLM:   
 

GLM2.5 
logit(motivation-statet) ∈ {0,1} = βo + β1EV + β2Ave.EV + β3trial-number + μ0 + 
μ1Ave.EV + ε  

 
Where β0-3 are fixed-effects and μ0-1 are random-effects within each subject. We used 
the EV – the expected value of the current offer on a given trial – to control for the 
effects of the current offer on an animal’s motivation-state. We used EV rather than 
the separate reward-magnitude and reward-probability dimensions of offers because 
Ave. EV and reward-probability were meaningfully correlated (r = 0.49). This 
correlation was an inherent feature of the task because reward environments were 
engendered by manipulating the distribution of reward-probabilities over time. This 
created autocorrelations in reward-probabilities over time and, therefore, correlations 
between reward-probability and retrospective summary statistics of task events like 
the Ave.EV. Scaling reward-probabilities by reward-magnitude as in the expectation-
value formula dampened this correlation (r = 0.23), meaning that EV and Ave. EV could 
be part of the same regression without collinearity. 
 
Acquisition, reconstruction and pre-processing of MRI data 
 

During collection of fMRI data monkeys were head-fixed in a sphinx posture 
within an MRI compatible chair (Rogue Research). MR images were acquired with a 
horizontal bore clinical 3T scanner with a 15-channel non-human primate (NHP)-
specific receive coil (RAPID Biomedical). Structural images were acquired during a 
previous experiment50. Functional images were acquired via the CMMR multiband 
gradient-echo T2* echo planar imaging (EPI) sequence designed specifically to 
achieve high signal-to-noise (SNR) in subcortical structures78,79. This was 
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characterised by 1.25mm isotropic voxels with a repetition time (TR) of 1282ms, echo 
time (TE) of 25.40ms, multiband acceleration factor MB=2, in-plane acceleration factor 
R=2, and flip angle of 63°.  

Offline reconstruction of the raw functional data was performed following the 
dynamic off-resonance correction method developed by Shahdloo et al80. In summary, 
standard Nyquist ghost correction and dynamic zeroth-order B0 correction were 
applied first. Then, the EPI reference navigator data acquired at every time-point was 
compared to navigator data from single-band references to estimate first-order 
dynamic off-resonance perturbations arising from the awake animal’s body 
movements. Finally, the off-resonance estimates were used to correct the raw data 
prior to reconstruction. 

Pre-processing of MR images was performed with a combination of FMRIB’s 
software library, Advanced Normalization Tools, the Human Connectome Project 
Workbench and Magnetic Resonance Comparative Anatomy Toolbox81. Although 
monkeys were head-fixed during MRI acquisition, incidental limb and body movements 
caused time-varying distortions in the B0 magnetic field and therefore non-linear 
motion artefacts along the phase encoding direction. To account for this, a low-noise 
EPI volume was identified for each session and then implemented as a reference to 
which other volumes were non-linearly registered slice-by-slice along the phase-
encode direction. Aligned and distortion-corrected EPIs were then registered non-
linearly first to monkey-specific high-resolution images, and then to a group template 
in CARET f99 macaque space. Further details of the group template construction are 
described elsewhere51. Finally, the functional images were temporally filtered (high-
pass temporal filtering, 3-dB cutoff of 100s) and spatially smoothed (Gaussian spatial 
smoothing, full-width half maximum of 2.5mm). 

 Three measures were used to detect artefacts in the data: a) For each slice in 
each volume the linear transform (in the y-plane) from that slice to the corresponding 
slice in the mean reference image; b) The normalized correlation between that slice 
and the corresponding slice in the mean reference image; c) For each volume, the 
correlation between that volume (mean-filtered across z-slices) and the mean 
reference image after correction. Volumes were removed when they exceeded 2.5 
SDs above the median of each measure. The threshold was chosen to keep the 
number of censored volumes less than 10% of the total volumes. We also added 13 
PCA components describing, for each volume, the warping from that volume to the 
mean reference image when correcting motion artefacts (i.e., they capture signal 
variability associated with motion induced distortion artefacts), as parametric 
regressors of non-interest that were not convolved in our general linear models. 
  
fMRI data analysis 
 
We focused our analysis of fMRI data on circumscribed a priori regions of interest 
(ROIs) comprising dorsal raphe nucleus (DRN), ventral tegmental area (VTA), 
substantia nigra (SN), nucleus basalis (NB), locus coeruleus (LC) and habenula (Hb) 
in the subcortex, and anterior cingulate cortex (ACC), anterior insula (AI) and 
supplementary motor area (SMA) in the cortex. Subcortical and SMA ROIs consisted 
in anatomical masks that were drawn on a group structural template in CARET F99 
macaque monkey space and then warped to individual structural and functional 
spaces by nonlinear transformation. These masks were constructed separately by 
two-different assessors based on the Rhesus Monkey Brain Atlas72 and then evaluated 
on for convergence across assessors. ACC and AI ROIs were defined as 3mm 
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spheres centred on the peak of functionally relevant activation contrasts obtained in 
previous studies19,50.  
 We extracted the filtered time series of BOLD signal from each ROI. The 
extracted signals were then averaged, normalised and up-sampled by a factor of 
1519,50,51. The upsampled data was then epoched to 6s time windows spanning 1s 
before to 5s after the appearance of the reward-opportunity stimulus on each trial. We 
then examined the relationship between behaviour and brain activity with ordinary 
least squares (OLS) GLMs performed at each timepoint in each epoch. 

 Inferential statistics for time-course GLMs were performed using a leave-one-
out cross-validation (LOOCV) procedure designed to estimate the peak regression-
coefficient in each session without selection bias19,50,51. For each session s (N = 59), 
we determined the timepoint t at which the largest absolute-value regression 
coefficient occurred in the remaining N-1 (i.e., 58) sessions. We restricted our search 
for t to a 4s window from 1s after to 5s after the decision-making time – that is, a four 
second window centred on the mean macaque HRF. We then calculated the 
regression coefficient in session s at time t. We repeated this iteratively for each 
session, which yielded a series of 59 regression coefficients. We performed 
significance testing on regression coefficients with single-sample t-tests.  To control 
for multiple comparisons, we applied the Bonferroni-Holm correction for any analysis 
performed on more than one ROI. For each GLM, we repeated this for each regressor 
in each ROI. All time course analysis was conducted in MATLAB (MathWorks) using 
custom analysis scripts.  

 
We implemented the following series of GLMs: 
 

GLM3.1 
BOLDROI = βo + β1reward-magnitude+ β2reward-probability + β3environment-
richness + β4environment-stochasticity + β5behavioural-history + 
β6environment-richness*behavioural-history + β7environment-
stochasticity*behavioural-history + β8pupil-size + β9trial-number 

 
Where BOLDROI indicates a t-by-s matrix containing time-series data for a given ROI 
(where t is trial, and s is time-sample). Pupil-size and trial-number were added as 
confound regressors to control for the effects of arousal and fatigue, respectively.  
 

GLM3.2 
BOLDROI = βo + β1reward-magnitude+ β2reward-probability + β3environment-
richness + β4environment-stochasticity + β5pupil-size + β6trial-number 
 

GLM3.2 was performed separately for subsets of trials in which an animals pursued 
and rejected the previous opportunity, respectively. 

 
GLM3.3 
BOLDROI = βo + β1decision + β2pupil-size + β3trial-number 

 
Where decision is the pursue vs. reject decision made on a given trial.  
 

GLM3.4 
BOLDROI = βo + β1transition-period + β2 motivation-state-identity + β3decision + 
β4pupil-size + β5trial-number 
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Where transition-period is a dummy-coded variable covering symmetric 7-trials 
windows (t-3:t+3) around decoded motivation-state transitions and motivation-state-
identity is the decoded motivation-state (high vs. low) for a given trial. GLM3.4 was 
subsequently performed with 7-trial transition-periods aligned to from (t-6:t+0) to (t-
0:t+6) with respect to decoded transitions to compare the timing of transition-related 
signals (see fig.3 and supplementary figure S8). It was also performed separately for 
low-to-high and high-to-low transition events (see fig. 3).  
 
We tested whether DRN coded the value of recently available rewards (Ave. EV) with 
the following GLM:  
 

GLM3.5 
BOLDDRN = βo + β1EV + β2Ave. EV + β3pupil-size + β4trial-number 

 
GLM3.5 was performed on data from DRN alone, as it was designed to test a specific 
hypothesis arising from the combined neural and behavioural data. We used EV to 
control for the effects of the currently available offer instead of separate reward-
magnitude and reward-probability regressors as in previous GLMs of BOLD signal. 
This is due to collinearity between Ave. EV and reward-probability regressors (see 
GLM2.5 for further explanation).  
 
We probed changes in connectivity as a function of richness of the environment using 
the following PPI-GLM.  
 

GLM3.6 
BOLDROI = βo + β1BOLDseed + β2PPI + β3environment-richness + β4reward-
magnitude + β5reward-probability + β6environment-stochasticity + β7pupil-size 
+ β8trial-number 
 

Where BOLDseed is a t-by-s matrix containing time-series data for seed regions in PPI 
analysis, and PPI is the interaction between BOLDseed and environment-richness 
regressors. GLM 3.6 was performed separately for subsets of trials in which an 
animals pursued and rejected the previous opportunity, respectively. Analogously, we 
tested differences in functional connectivity with respect to (i) motivation-state level, 
and (ii) motivation-state transitions with the following PPI:   
 

GLM3.7 
BOLDROI = βo + β1BOLDseed + β2PPI + β3transition-period + β4motivation-
state-identity + β5pupil-size + β6trial-number 

 
Where BOLDseed is a t-by-s matrix containing time-series data for seed regions in 
PPI analysis. The analysis was performed twice – once where PPI was the 
interaction between BOLDseed and transition-period regressors, and once where PPI 
was the interaction between BOLDseed and motivation-state-identity regressors. 
Finally, we tested differences in functional connectivity with respect to pursue/reject 
decisions with the following PPI:  
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GLM3.8 
BOLDROI = βo + β1BOLDseed + β2PPI + β3decision + β4pupil-size + β5trial-
number 

 
Where BOLDseed is a t-by-s matrix containing time-series data for seed regions in 
PPI analysis, and PPI is the interaction between BOLDseed and decision regressors. 
 
Transcranial ultrasound stimulation (TUS) 
 

TUS was performed using a four-element annular array transducer (NeuroFUS 
CTX-500, 64mm active diameter, Brainbox Ltd, Cardiff, UK) combined with a 
programmable amplifier (Sonic Concept Inc’s Transducer Power Output System, TPO-
105, Brainbox Ltd, Cardiff, UK). The transducer was paired with a transparent coupling 
cone filled with degassed water and sealed with a latex membrane. The water was 
degassed for 4-5 hr before each stimulation session and was replaced after each 
session. The resonance frequency of the ultrasonic wave was set to 500kHz. The 
stimulation protocol was based on previously established protocols in macaques (9, 
18, 44).  We used the following protocol: duty cycle 30%; pulse length 30ms; pulse 
repetition interval 100ms; total stimulation duration 30s. The pressure field from the 
transducer was measured in a water tank with a 75 µm diameter PVDF needle 
hydrophone (Precision Acoustics, Dorset UK) which had been calibrated at 500 kHz 
by the National Physical Laboratory (Teddington UK). The free-field spatial-peak 
pulse-average intensity (Isppa) at 60mm focal depth was 120 W/cm2, which was 
consistent with the output given by the transducer manufacturer. 
 At the beginning of each stimulation session the animal’s skull was shaved and 
a conductive gel (SignaGel Electrode; Parker Laboratories Inc.) was applied to the 
skin. The water-filled coupling cone and the gel was used to ensure ultrasonic coupling 
between the transducer and the animal’s head. Next, the ultrasound transducer / 
coupling cone was placed on the skull and a Brainsight Neuronavigation System 
(Rogue Research, Montreal, CA) was used to position the transducer so that the focal 
spot would be cantered on the targeted brain region.  There were four stimulation 
conditions: 1) DRN (target of interest); 2) VTA (sub-cortical active control condition); 
2) superior-temporal-sulcus (STS; cortical active control condition); 4) sham (passive 
control condition).  DRN and VTA targets were approximately 50mm, and the STS 
35mm, from the surface of the transducer (the exact focal distance depended on the 
subject).  All targets were sonicated bilaterally for 60s in total, with 30s of stimulation 
applied to a target from each hemisphere. Sonication of the midline targets (DRN and 
VTA) from one hemisphere was immediately followed by sonication of the same target 
from the contralateral hemisphere (cross-beam stimulation; 50).  Sonication of the STS 
in one hemisphere was immediately followed by sonication of a homologous target in 
the contralateral hemisphere. Hemispheres were sonicated in a pseudo-random order. 
After stimulation, monkeys were immediately moved to a testing room for behavioural 
data collection. The sham condition completely matched a typical stimulation session 
(setting, stimulation procedure, neuro-navigation, targeting, transducer preparation 
and timing of its bilateral application to the shaved skin on the head of the animal) 
except that sonication was not triggered. During the sham session the montage was 
pseudo-randomly positioned to target DRN, VTA or STS. Each stimulation condition 
was repeated five times, on separate days, and the order of the stimulation sessions 
was pseudo-randomized for each animal. The stimulation was always performed at 
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the same time of the day and there was always a 24-hour gap between each session, 
regardless of it being a real or sham stimulation session. 
 
Acoustic modelling 
 

We simulated the propagation of acoustic waves produced by the TUS protocol 
as described by Yaakub et al., 2023. In brief, we used k-wave – a k-space 
pseudospectral solver 83 – and kArray tools to obtain estimates for the pressure 
amplitude, peak intensity and spatial distribution of TUS at stead-state. First, we 
simulated the acoustic wave propagation in water (free field) to characterise 
ultrasound beam for a target intensity of 120 W/cm2 at 50mm focal depth (focal depth 
of VTA and DRN from transducer).  Next, we performed the simulation for DRN and 
VTA targets in the skull.  The skull was estimated from pseudo-CT images obtained 
from each monkey using a Black Bone MRI sequence 73. The skull was obtained by 
thresholding the pseudo-CT images at 1400-2100 Hounsfield Units (HU). A linear 
relationship between the pseudo-CT Hounsfield Units and the sound speed, as well 
as the density, and absorption coefficient was assumed as described elsewhere 84,85. 
The simulation grid size was set to the size of the T1-weighted MRI with a grid spacing 
of 0.5 mm which results in approximately 6 points per wavelength in water and tissue 
and up to 12.4 points per wavelength in bone. 
 
Resting-state imaging data acquisition, pre-processing, and analysis 
 

We further validated the TUS protocol by examining its effect on resting state 
coactivation patterns between VTA/DRN and key interconnected cortical and 
subcortical regions. Awake resting-state fMRI (rs-fMRI) data was acquired for all four 
monkeys (same animals as in Experiments 1 and 2) pre-vs-post DRN-TUS and VTA-
TUS, respectively. Pre-processing and analysis of rs-fMRI data has been described 
elsewhere 25,82.   

We characterised the effects of TUS on the coactivation of DRN/VTA and ROIs 
by comparing rs-fMRI data collected before DRN/VTA TUS with the rs-fMRI data 
collected immediately after DRN/VTA TUS.  Pre-stimulation and post-stimulation rs-
fMRI were collected on the same day. The impact of DRN/VTA TUS on coactivation 
patterns was quantified with seed-based connectivity analyses, which involved 
calculating a series of pairwise linear correlations in BOLD activity between a seed 
region (DRN or VTA) and the remaining ROIs.  The resulting pre-stimulation 
connectivity fingerprints for DRN-TUS and VTA-TUS were then contrasted with post-
stimulation connectivity fingerprints before DRN-TUS and VTA-TUS (see fig. 4C).  

 
TUS data analysis 
 

We characterised the behavioural effect of TUS by examining its two-way 
interactions with key predictors of decision-making in a series of Binomial GLMs. In 
these GLMs, the effect for TUS-condition was constructed to compare each individual 
active stimulation condition (STS, VTA, DRN) to sham-TUS as a reference. On some 
occasions, we compared DRN-TUS to one of the other active stimulation conditions – 
for example, DRN-TUS vs STS-TUS. We did this by performing GLMs on subsets of 
data that included only the TUS-conditions of interest. These analyses are specifically 
noted in the main text. 
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 We tested the following to examine how TUS modulates the richness of the 
environment, and behavioural history effects, respectively.  
 

GLM4.1 
logit(decisiont)  = βo + β1reward-magnitude + β2reward-probability + 
β3environment-richness + β4environment-stochasticity + β5 TUS-condition + β6 
(reward-magnitude*reward-probability) + β7 (environment-richness*TUS-
condition) + β8 (trial-number) + μ0 + ε  

 
Where β0-8 are fixed-effects, μ0 is the by-subject random intercept and ε is an error 
term.  
 

GLM4.2 
logit(decisiont)  = βo + β1reward-magnitude + β2reward-probability + 
β3behavioural-history + β4 TUS-condition + β5 (reward-magnitude*reward-
probability) + β6 (behavioural-history*TUS-condition) + β7 (trial-number) + μ0 + 
ε  

 
Where β0-7 are fixed-effects, μ0 is the by-subject random intercept and ε is an error 
term. The paucity of data in each TUS condition for each subject prevented us from 
fitting models with more complex random-effects structures for these models. We 
examined the influence of TUS on the frequency of transitions between motivation-
states with the following GLM: 
 

GLM4.3  
logit(state-transitiont) = βo + β1reward-magnitude + β2reward-probability+ 
β3TUS-condition + β4reward-magnitude*reward-probability + β5trial-number + 
μ0 + ε 
 

Where, state-transition ∈ {0,1}, β0-5 are fixed-effects, μ0 is the by-subject random 
intercept and ε is an error term. We performed a similar GLM to examine the influence 
of TUS on high-to-low transitions specifically:  
 

GLM4.4  
logit(state-decreaset) = βo + β1reward-magnitude + β2reward-probability+ 
β3TUS-condition + β4reward-magnitude*reward-probability + β5trial-number + 
μ0 + ε 

 
Where, state-decrease ∈ {0,1}, β0-5 are fixed-effects, μ0 is the by-subject random 
intercept and ε is an error term. We analysed TUS’s influence relationship between 
motivation-states and the availability of rewards (Ave. EV) with the following GLM:  
 

GLM4.5  
logit(motivation-statet) = βo + β1EV + β2Ave.EV + β3TUS-condition + β4TUS-
condition*Ave.EV + β5trial-number + μ0 + ε 

 
Where, motivation-state ∈ {0,1} and the high-motivation=1 (i.e., positive coefficients 
correspond to increases in the likelihood of occupying the high-motivation state), β0-5 
are fixed-effects, μ0 is the by-subject random intercept and ε is an error term. We 
performed GLM4.5 separately on behavioural data mean-split according to Ave.EV to 
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determine whether DRN-TUS principally affected the influence between low-value 
environments and low-motivation states.  
 
 


